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THE	  GAMMA-‐RAY	  SKY	  above	  1	  GeV	  
5	  years	  of	  Fermi	  LAT	  data	  



3	  Dark	  Matter	  simulation:	  
Pieri+(2009)	  arXiv:0908.0195	  

The	  dark	  matter-‐induced	  
gamma-‐ray	  sky	  
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Need	  to	  disentangle	  dark	  matter	  annihilations	  from	  
conventional	  astrophysics.	  

	  
Crucial	  to	  understand	  the	  astrophysical	  processes	  in	  

great	  detail.	  



FOREGROUNDS	  
[Or	  the	  complexity	  of	  the	  gamma-‐ray	  sky]	  
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Dark	  Matter	  Search	  Strategies	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Satellites	  

Low	  background	  and	  good	  

source	  id,	  but	  low	  statistics	  

	  	  	  	  Galactic	  Center	  
Good	  Statistics,	  but	  source	  	  

confusion/diffuse	  background	  

	  	  	  	  	  	  Milky	  Way	  Halo	  
Large	  statistics,	  but	  diffuse	  

background	  

	  	  	  	  	  	  	  	  Spectral	  Lines	  
Little	  or	  no	  astrophysical	  uncertainties,	  good	  

source	  id,	  but	  low	  sensitivity	  because	  of	  

expected	  small	  branching	  ratio	   Galaxy	  Clusters	  
Low	  background,	  but	  low	  statistics	  

	  	  	  	  	  	  	  	  	  	  	  Isotropic	  background	  
Large	  statistics,	  but	  astrophysics,	  galactic	  
diffuse	  background	  

	  	  Both	  anisotropies	  and	  intensity!	  	  

This talk   
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Need	  to	  disentangle	  dark	  matter	  annihilations	  from	  
conventional	  astrophysics.	  

	  
Crucial	  to	  understand	  the	  astrophysical	  processes	  in	  

great	  detail.	  



-‐  Extended	  energy	  range:	  200	  MeV	  –	  100	  GeV	  �	  100	  MeV	  –	  820	  GeV	  

-‐  Significant	  high-‐energy	  cutoff	  feature	  in	  IGRB	  spectrum,	  consistent	  with	  simple	  

source	  populations	  attenuated	  by	  EBL	  

-‐  ~50%	  of	  total	  EGB	  above	  100	  GeV	  now	  resolved	  into	  individual	  LAT	  sources	   9	  

The	  brand	  new	  Fermi	  LAT	  IGRB	  spectrum	  

PRELIMINARY 
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PRELIMINARY 

This	  guy	  
doesn’t	  change	  

This	  one	  does!	  
(time-‐dependent)	  



Origin	  of	  the	  Extragalactic	  Gamma-‐ray	  Background	  (EGB)	  
in	  the	  LAT	  energy	  range	  

Courtesy	  of	  K.	  Bechtol	  

            THIS TALK 
 

(See also Di Mauro’s) 

Blazars	  

Radio	  	  
galaxies	  

Star-‐
forming	  
galaxies	  

Galaxy	  	  
clusters	  
(upper	  limits)	  

Cascades	  
(upper	  limits)	  

Dark	  matter	  
annihilation	  /	  	  
decay	  
(upper	  limits)	  

GRBs	  

???	  
Unknown	  
sources	  /	  
processes	  

[EGB	  ==	  IGRB	  +	  individually	  resolved	  extragalacCc	  sources]	  

Lacki’s talk 
Fields’ talk 

Ajello’s talk 

See also talks by 
Petrosian, Vernstrom… 

Venters’ talk 

Di Mauro’s talk 
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THE DARK MATTER CONTRIBUTION 

TO THE EGB 



Cosmological	  DM	  annihilation	  

13 

DM	  annihila7on	  signal	  from	  all	  DM	  halos	  at	  
all	  redshi>s	  should	  contribute	  to	  the	  IGRB.	  
	  
	  

DM	  halos	  and	  substructure	  expected	  at	  all	  
scales	  down	  to	  a	  Mmin	  ~	  10-‐6	  Msun.	  
	  
Gamma-‐ray	  aKenua7on	  due	  to	  the	  EBL	  and	  
‘redshi>ing’	   effects	   should	   make	   lower	  
redshi>s	  (z	  ≤	  2)	  to	  contribute	  the	  most.	  
	  
	  
Is	   this	  cosmological	  DM	  annihila0on	  signal	  
expected	   to	   be	   comparable	   to	   other	  	  
possible	  contributors	  to	  the	  IGRB?	  	  

Zoom	  sequence	  from	  100	  to	  0.5	  Mpc/h	  	  
Millenium-‐II	  simulation	  boxes	  (Boylan-‐Kolchin+09)	  
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could also receive a contribution from unresolved Galactic DM subhalos [31, 32]. We will
focus mainly on limiting the extragalactic DM signal in this work, but comment carefully on
the possible size of Galactic contributions. A different approach to extract a DM signal from a
full sky analysis, which we will not follow, is to analyze the power spectrum of the gamma-ray
signal, which may contain identifiable signatures on different angular scales [33–37].

There are several important uncertainties inherently present when trying to constrain
DM properties from the type of analysis presented in [30]. The largest comes from the the-
oretical modeling of the expected DM annihilation luminosity. We use recently presented
results from the ‘Millennium II’ simulation of cosmic structure formation [38, 39], as well
as the approach in the Fermi-LAT pre-launch study [40], to calculate the DM contribution
to the IGRB signal. Another uncertainty stems from the contribution of more conventional,
astrophysical sources to the extragalactic gamma-ray signal, which is currently hard to quan-
tify. A large contribution is believed to originate from unresolved point sources, with the
most important potentially being unresolved blazars [41–45]. Other sources, such as ordinary
star forming galaxies [46, 47] and in particular starburst galaxies [48], as well as structure
shocks in clusters of galaxies [49–53], might also contribute (see, e.g., [54] for a short review).
The Fermi-LAT is expected to improve our knowledge of these sources and increase our un-
derstanding of the shape and normalization of their contribution to the IGRB in the near
future (for early results, see [55]). We address these background uncertainties by presenting
both very conservative and more theoretically-motivated limits on the DM contribution to
the IGRB signal.

The paper is organized as follows. In section 2 we describe the calculation of the isotropic
gamma-ray flux from cosmological distant DM annihilations, and comment on the potential
contribution from Galactic DM. In section 3 we motivate and describe the particle physics
DM models we constrain. Section 4 contains a description of our procedure for obtaining the
limits, and in section 5 we present and discuss our results. Section 6 contains our summary.

2 Dark matter induced isotropic gamma-ray flux

2.1 Extragalactic

There are several ingredients necessary to calculate the flux of gamma-rays from cosmological
DM annihilation. In addition to the gamma-ray yield per annihilation, assumptions need to
be made on the distribution and evolution of DM halos in the Universe. Also, for high-energy
gamma-rays, the effects of intergalactic absorption become important and has to be taken
into account. The flux from DM induced extragalactic photons can be expressed as, [23],

dφγ

dE0
=

�σv�
8π

c

H0

ρ̄
2
0

m
2
DM

�
dz(1 + z)3

∆2(z)
h(z)

dNγ(E0(1 + z))
dE

e
−τ(z,E0)

, (2.1)

where c is the speed of light, H0 the Hubble constant equal to 100×h km s−1/Mpc, τ(z, E0) the
optical depth, �σv� the sample averaged DM annihilation cross section times relative velocity
(hereinafter referred to as cross section), dNγ/dE the gamma-ray spectrum at emission,
mDM the DM mass, and ρ̄0 its average density today, while h(z) =

�
ΩM (1 + z)3 + ΩΛ

parameterizes the energy content of the Universe. The quantity ∆2(z), as defined in [23],
describes the enhancement of the annihilation signal arising due to the clustering of DM into
halos and subhalos (relative to a uniform DM distribution in the Universe). For the ΩM ,
ΩΛ, and h we will consistently adopt the values used in [23] and [38]; which will be the two
references we follow in order to derive ∆2(z).

– 2 –

EBL 
(Domínguez+11) 

Redshifted 
DM spectrum 

“Flux multiplier” Constant for a particular  
DM model 

FLUX from 
extragalactic 

DM annihilation 

The	  flux	  multiplier	  is	  a	  measure	  of	  the	  clumpiness	  of	  the	  DM	  in	  the	  Universe,	  
and	  is	  the	  main	  source	  of	  theoretical	  uncertainty	  in	  this	  game.	  
	  

Uncertainties	  in	  this	  parameter	  traditionally	  huge!	  

Theoretical	  predictions	  for	  the	  cosmological	  signal	  

The DM extragalactic annihilation flux 
can be computed in the Halo Model 
from 3 or more quantities 
determined from simulations 
or 
directly from the Power Spectrum, 
with minimal assumptions

Conclusion

Halo Model:

F = c3v(M, z)

� cv
0 dxx2κ2(x)

�� cv
0 dxx2κ(x)

�2ζ(z) =
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Ωmρc
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dM
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∆vir(z)
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+ subhalos properties (x2)

Power Spectrum:

ζ(z) = �δ2(z, Ω̂)� =
� kmax
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dk

k

k3 PNL(k)

2π2
or

The mass profile and accretion history of CDM haloes 1107

Figure 2. Mass dependence of the best-fitting Einasto parameters for all
haloes in our sample at z = 0. Only relaxed haloes with more than 5000
particles within the virial radius are considered. The top and bottom panels
show, respectively, the concentration, c = r200/r−2, and shape parameter, α,
as a function of halo virial mass. Individual points are coloured according to
the third parameter (see colour bar on the right of each panel). The connected
symbols trace the median values for each Millennium Simulation (see legend
in the top panel); thin solid lines delineate the 25 to 75 percentile range.
The dashed curves indicate the fitting formulae proposed by Gao et al.
(2008). For clarity only 10 000 haloes per simulation are shown in this
figure. Haloes shown in grey are systems where the best-fitting scale radius
is smaller than the convergence radius; these fits are deemed unreliable
and the corresponding haloes are not included in the analysis. The grey
vertical bars highlight three different mass bins used to explore parameter
variations at fixed halo mass (see Sections 4.3 and 4.4). The small boxes
indicate haloes in each of those bins with average, higher-than-average and
lower-than-average values of α (bottom panel) or of the concentration (top
panel).

concentration (Neto et al. 2007). An ideal definition of formation
time would result in a natural correspondence between the charac-
teristic density of a halo at z = 0 and the density of the Universe at
the time of its assembly.

We explore two possibilities in Fig 3. Here, we show the mean
density enclosed within various characteristic radii at z = 0 ver-
sus the critical density of the Universe at the time when the main
progenitor mass equals the mass enclosed within the same radii.

The left-hand panels correspond to radii enclosing 1/4, 1/2 and
3/4 of the virial mass of the halo. The dots indicate individual
haloes coloured by halo mass, as shown in the colour bar at the top.
Boxes and whiskers trace the 10th, 25th, 75th and 90th percentiles

in bins of ρcrit. Note the tight but rather weak (and non-linear)
correlation between densities at these radii. This confirms our earlier
statement that ‘half-mass’ formation times are unreliable indicators
of halo characteristic density: haloes with very different z1/2 may
nevertheless have similar concentrations.

The right-hand panels of Fig. 3 show the same density correla-
tions, but measured at various multiples of r−2, the scale radius of
the mass profile at z = 0. The middle panel shows that the mean den-
sity within r−2, 〈ρ−2〉 = M−2/(4π/3)r3

−2 is directly proportional to
the critical density of the Universe at the time when the virial mass
of the main progenitor equals M−2. Intriguingly, this is also true
at r−2/2 (top-right panel) and at 2 × r−2 (bottom-right panel), al-
though with different proportionality constants (listed in the figure
legends).

This means that there is an intimate relation between the mass
profile of a halo and the shape of its MAH, in the sense that, once
the scale radius is specified, the MAH can be reconstructed from
the mass profile, and vice versa. Since mass profiles are nearly
self-similar when scaled to r−2, this implies that accretion histories
must also be approximately self-similar when scaled appropriately.
The MAH self-similarity has been previously discussed by van den
Bosch (2002), but its relation to the shape of the mass profile, as
highlighted here, has so far not been recognized.

4.3 NFW accretion histories and mass profiles

We explore further the relation between MAH and mass profile
by casting both in a way that simplifies their comparison, i.e. in
terms of mass versus density. In the case of the mass profile, this
is just the enclosed mass–mean inner density relation, M(〈ρ〉) (see
Section 3.1). For the MAH, this reduces to expressing the virial
mass of the main progenitor in terms of the critical density, rather
than the redshift, M(ρcrit(z)). In what follows, we shall scale all
masses to the virial mass of the halo at z = 0, M0; ρcrit(z) to the
value at present, ρ0; and 〈ρ〉 to 200 ρ0.

The top-left panel of Fig. 4 shows, in these scaled units, the av-
erage M(〈ρ〉) profile for haloes in three different narrow mass bins
(indicated by the grey vertical bars in the bottom panel of Fig. 2).
These mean profiles are computed by averaging halo masses, for
given 〈ρ〉, after scaling all individual haloes as indicated above. As
expected, each profile is well fitted by an NFW profile where the
concentration increases gradually with decreasing mass. The heavy
symbols on each profile indicate the value of M−2 and 〈ρ−2〉. The
top-right panel shows the same data, but scaled to these character-
istic masses and densities. Clearly, the three profiles follow closely
the same NFW shape, which is fixed in these units.

The corresponding MAHs, computed as above by averaging
accretion histories of scaled individual haloes, are shown in the
bottom-left panel of Fig. 4. The heavy symbols on each profile
again indicate the value of M−2 (as in the above panel), as well as
ρcrit(z−2) = 776 〈ρ−2〉, computed using the relation shown in the
middle-right panel of Fig. 3.

In these scaled units, a single point can be used to specify the
‘concentration’ of an NFW profile, which is shown by the dashed
curves. Interestingly, these provide excellent descriptions of the
MAHs: rescaled to their own characteristic density and mass they
all look alike and also follow closely the NFW shape (bottom-right
panel of Fig. 4). The MAHs and mass profiles of CDM haloes are
not only nearly self-similar: they both have similar shapes that may
be approximated very well by the NFW profile.

This implies that the concentration of the mass profile just reflects
the ‘concentration’ of the MAH. Indeed, assuming that the NFW

1106 A. D. Ludlow et al.

Figure 1. Halo density profiles and accretion histories. Left-hand panel: median density profiles of MS-II relaxed haloes in the mass range 1.24 <

log M200/(1010 h−1 M") < 1.54 (corresponding to particle numbers in the range 2.5 × 104 < N200 < 5 × 104), selected according to their concentra-
tion (see boxes in the top panel of Fig. 2). Densities are shown scaled to ρ0, the critical density at z = 0, and weighted by r2 in order to enhance the dynamic
range of the plot. Radii are scaled to the virial radius, r200. The best-fitting Einasto profiles are shown by the thin solid curves, with parameters listed in the
legend. Dot–dashed curves indicate NFW profiles (whose shape is fixed in these units) matched at the scale radius, r−2, where the r2ρ profiles peak. Arrows
indicate the half-mass radius, r1/2. Right-hand panel: median MAHs of the same set of haloes chosen for the left-hand panel. Halo accretion history is defined
as the evolution of the mass of the main progenitor, expressed in units of the mass of the halo at z = 0. The heavy circles indicate the redshift, z−2, when the
progenitor’s mass equals the mass, M−2, enclosed within the scale radius at z = 0. The starred symbols indicate the half-mass formation redshift.

In the scaled units of Fig. 1 the scale radius, r−2, signals the
location of the maximum of each curve, and different concentrations
show as shifts in the position of the maxima, which are indicated
by large filled circles. In addition to their different concentrations,
the profiles differ as well in α, which increases with decreasing
concentration (see legends in Fig. 1). Arrows indicate the half-
mass radius of each profile. Dot–dashed curves show NFW profiles
(whose shape is fixed in this plot) with the same concentration as
the best Einasto fit (solid lines). The density profile curves more
gently than NFW for α ! 0.18 and less gradually than NFW for
α " 0.18, respectively.

The (median) MAHs corresponding to the same sets of haloes
are shown in the right-hand panel of Fig. 1. We define the MAH of
a halo as the evolution of the virial mass of the main progenitor,3

usually expressed as a function of the scalefactor a = 1/(1 + z),
and normalized to the present-day value, M0 = M200(z = 0). As ex-
pected, more concentrated haloes accrete a larger fraction of their
final mass earlier on. The filled stars indicate the ‘half-mass for-
mation redshift’, z1/2, whereas the filled circles indicate z−2, the
redshift when the mass of the main progenitor first reaches M−2,
the mass enclosed within r−2 at z = 0.

4 R ESULTS

4.1 The mass–concentration–shape relations

The top panel of Fig. 2 shows the mass–concentration relation for
our sample of relaxed haloes at z = 0. Concentrations are estimated
from Einasto fits, and are colour coded by the shape parameter, α,
as indicated by the colour bar. The open symbols track the median
concentrations as a function of mass. The thin solid lines trace the

3 The main progenitor of a given dark matter halo is found by tracing
backwards in time the most massive halo along the main branch of its
merger tree.

25th and 75th percentiles of the scatter at fixed mass. Different
symbols are used for the different MS runs, as specified in the
legend. Note the excellent agreement in the overlapping mass range
of each simulation, which indicates that our fitting procedure is
robust to the effects of numerical resolution.

The bottom panel of Fig. 2 shows the mass–α relation, coloured
this time by concentration. The trend is again consistent with earlier
work; the median values of α are fairly insensitive to halo mass,
except at the highest masses, where it increases slightly. The mass–
concentration–shape trends are consistent with earlier work; for
example, the dashed lines correspond to the fitting formulae pro-
posed by Gao et al. (2008) and reproduce the overall trends very
well.

Fig. 2 illustrates an interesting point already hinted at in Fig. 1:
the shape parameter seems to correlate with concentration at given
mass. Interestingly, haloes of average concentration have approx-
imately the same shape parameter (α ≈ 0.18, i.e. quite similar to
NFW), regardless of mass. Haloes with higher-than-average con-
centration have smaller values of α and vice versa. This suggests
that the same mechanism responsible, at given mass, for deviations
in concentration from the mean might also be behind the different
mass profile shapes at z = 0 parametrized by α. We explore this
possibility next.

4.2 Characteristic densities and assembly times

As pointed out by Navarro et al. (1997) and confirmed by subsequent
work (see, e.g. Jing 2000), the scatter in concentration is closely
related to the accretion history of a halo: the earlier (later) a halo is
assembled the higher (lower) its concentration.

This is clear from the assembly histories shown in Fig. 1, which
illustrate as well that defining ‘formation time’ in a way that corre-
lates strongly and unequivocally with concentration is not straight-
forward. For example, the often-used half-mass formation redshift,
z1/2, varies only weakly with c, making it an unreliable proxy for

The Halo Model approach

all DM particles belong to a DM halo of a given mass

∆2(z) ≡ ζ(z) =
1

Ωmρc
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∆vir(z)

3
�F � F = c3v(M, z)

� cv
0 dxx2κ2(x)
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3. HALO MASS FUNCTION

3.1. Fitting Formula and General Results

Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of the power
spectrum, successful analytical Ansätze predict the halo abun-
dance quite accurately by using a universal function describ-
ing the mass fraction of matter in peaks of a given height, ! !
"c/#(M; z), in the linear density field smoothed at some scale R ¼
(3M /4$%̄m)

1/3 (Press & Schechter 1974; Bond et al. 1991; Sheth
& Tormen 1999). Here, "c # 1:69 is a constant corresponding to
the critical linear overdensity for collapse and #(M ; z) is the rms
variance of the linear density field smoothed on scale R(M ). The
traditional nonlinear mass scale M$ corresponds to # ¼ "c. This
fact has motivated the search for accurate universal functions de-
scribing simulation results by Jenkins et al. (2001), White (2002),
and Warren et al. (2006). Following these studies, we choose the
following functional form to describe halo abundance in our
simulations:

dn

dM
¼ f (#)

%̄m
M

d ln #%1

dM
: ð2Þ

In extended Press-Schechter theory, the overdensity at a location
in a linear density field follows a random walk with decreasing
smoothing scale. The function f (#) is the #-weighted distribution
of first crossings of these random walks across a barrier separat-
ing collapsed objects from uncollapsed regions (e.g., where the
random-walking overdensity first crosses "c). The function f (#)
is expected to be universal to the changes in redshift and cos-
mology and is parameterized as

f (#) ¼ A
#

b

! "%a

þ1

# $
e%c=# 2

; ð3Þ

where

#2 ¼
Z

P(k)Ŵ (kR)k 2 dk; ð4Þ

P(k) is the linear matter power spectrum as a function of wave-
number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #%1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
a, b, and c are constants to be calibrated by simulations. The pa-
rameter A sets the overall amplitude of the mass function, while a
and b set the slope and amplitude of the low-mass power law, re-
spectively. The parameter c determines the cutoff scale at which
the abundance of halos exponentially decreases.

The best-fit values of these parameters were determined by fit-
ting equation (3) to all the z ¼ 0 simulations using &2 minimiza-
tion and are listed in Table 2 for each value of !. For! ) 1600,

we fix the value of A to be 0.26 without any loss of accuracy.12

This allows the other parameters to vary monotonically with !,
allowing for smooth interpolation between values of !.
Figure 5 shows the mass function measured for three values

of ! and the corresponding best-fit analytic functions. We plot
(M 2/%̄m) dn/dM rather than dn/dM to reduce the dynamic range
of the y-axis, as dn/dM values span nearly 14 orders of magni-
tude. The figure shows that as ! increases the halo masses be-
come systematically smaller. Thus, from ! ¼ 200 to 3200, the
mass scale of the exponential cutoff reduces substantially. The
shape of the mass function is also altered; at! ¼ 200 the loga-
rithmic slope at low masses is *%1.85, while at ! ¼ 3200 the
slope is nearly%2. This change in slope is due to two effects. First,
the fractional change in mass when converting between values of
! is not a constant; it depends on halo mass. Because halo con-
centrations are higher for smaller halos, the fractional change is
higher at lower masses, thus steepening the mass function. Sec-
ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h%1 M+, because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
mass (e.g., Moore et al. 1999; Gao et al. 2004), and the largest11 A convenient property of the Sheth & Tormenmass function is that one re-

covers the mean matter density of the universe when integrating over all mass;
the function is normalized such that

R
f (#) d ln #%1 ¼ 1. Eq. (3) does not con-

verge when integrating to log #%1 ¼ %1. In Appendix C we present a modified
fitting function that is properly normalized at all ! but still produces accurate
results at z ¼ 0.

12 Although a four-parameter function is required to accurately fit the data at
low!, at high overdensities the error bars are sufficiently large that a degeneracy
between A and a emerges, and the data can be fit with only three free parameters,
given a reasonable choice for A.

Fig. 5.—Measured mass functions for all WMAP1 simulations, plotted as
(M 2/%̄m) dn/dM against logM . The solid curves are the best-fit functions from
Table 2. The three sets of points show results for! ¼ 200, 800, and 3200 ( from
top to bottom). To provide a rough scaling betweenM and #%1, the top axis of the
plot shows#%1 for thismass range for theWMAP1 cosmology. The slight offset be-
tween the L1280 results and the solid curves is due to the slightly lower value of
"m ¼ 0:27.
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3.1. Fitting Formula and General Results

Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of the power
spectrum, successful analytical Ansätze predict the halo abun-
dance quite accurately by using a universal function describ-
ing the mass fraction of matter in peaks of a given height, ! !
"c/#(M; z), in the linear density field smoothed at some scale R ¼
(3M /4$%̄m)

1/3 (Press & Schechter 1974; Bond et al. 1991; Sheth
& Tormen 1999). Here, "c # 1:69 is a constant corresponding to
the critical linear overdensity for collapse and #(M ; z) is the rms
variance of the linear density field smoothed on scale R(M ). The
traditional nonlinear mass scale M$ corresponds to # ¼ "c. This
fact has motivated the search for accurate universal functions de-
scribing simulation results by Jenkins et al. (2001), White (2002),
and Warren et al. (2006). Following these studies, we choose the
following functional form to describe halo abundance in our
simulations:

dn

dM
¼ f (#)

%̄m
M

d ln #%1

dM
: ð2Þ

In extended Press-Schechter theory, the overdensity at a location
in a linear density field follows a random walk with decreasing
smoothing scale. The function f (#) is the #-weighted distribution
of first crossings of these random walks across a barrier separat-
ing collapsed objects from uncollapsed regions (e.g., where the
random-walking overdensity first crosses "c). The function f (#)
is expected to be universal to the changes in redshift and cos-
mology and is parameterized as
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! "%a
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where

#2 ¼
Z

P(k)Ŵ (kR)k 2 dk; ð4Þ

P(k) is the linear matter power spectrum as a function of wave-
number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #%1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
a, b, and c are constants to be calibrated by simulations. The pa-
rameter A sets the overall amplitude of the mass function, while a
and b set the slope and amplitude of the low-mass power law, re-
spectively. The parameter c determines the cutoff scale at which
the abundance of halos exponentially decreases.

The best-fit values of these parameters were determined by fit-
ting equation (3) to all the z ¼ 0 simulations using &2 minimiza-
tion and are listed in Table 2 for each value of !. For! ) 1600,

we fix the value of A to be 0.26 without any loss of accuracy.12

This allows the other parameters to vary monotonically with !,
allowing for smooth interpolation between values of !.
Figure 5 shows the mass function measured for three values

of ! and the corresponding best-fit analytic functions. We plot
(M 2/%̄m) dn/dM rather than dn/dM to reduce the dynamic range
of the y-axis, as dn/dM values span nearly 14 orders of magni-
tude. The figure shows that as ! increases the halo masses be-
come systematically smaller. Thus, from ! ¼ 200 to 3200, the
mass scale of the exponential cutoff reduces substantially. The
shape of the mass function is also altered; at! ¼ 200 the loga-
rithmic slope at low masses is *%1.85, while at ! ¼ 3200 the
slope is nearly%2. This change in slope is due to two effects. First,
the fractional change in mass when converting between values of
! is not a constant; it depends on halo mass. Because halo con-
centrations are higher for smaller halos, the fractional change is
higher at lower masses, thus steepening the mass function. Sec-
ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h%1 M+, because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
mass (e.g., Moore et al. 1999; Gao et al. 2004), and the largest11 A convenient property of the Sheth & Tormenmass function is that one re-

covers the mean matter density of the universe when integrating over all mass;
the function is normalized such that

R
f (#) d ln #%1 ¼ 1. Eq. (3) does not con-

verge when integrating to log #%1 ¼ %1. In Appendix C we present a modified
fitting function that is properly normalized at all ! but still produces accurate
results at z ¼ 0.

12 Although a four-parameter function is required to accurately fit the data at
low!, at high overdensities the error bars are sufficiently large that a degeneracy
between A and a emerges, and the data can be fit with only three free parameters,
given a reasonable choice for A.

Fig. 5.—Measured mass functions for all WMAP1 simulations, plotted as
(M 2/%̄m) dn/dM against logM . The solid curves are the best-fit functions from
Table 2. The three sets of points show results for! ¼ 200, 800, and 3200 ( from
top to bottom). To provide a rough scaling betweenM and #%1, the top axis of the
plot shows#%1 for thismass range for theWMAP1 cosmology. The slight offset be-
tween the L1280 results and the solid curves is due to the slightly lower value of
"m ¼ 0:27.
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traditional nonlinear mass scale M$ corresponds to # ¼ "c. This
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P(k) is the linear matter power spectrum as a function of wave-
number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #%1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
a, b, and c are constants to be calibrated by simulations. The pa-
rameter A sets the overall amplitude of the mass function, while a
and b set the slope and amplitude of the low-mass power law, re-
spectively. The parameter c determines the cutoff scale at which
the abundance of halos exponentially decreases.

The best-fit values of these parameters were determined by fit-
ting equation (3) to all the z ¼ 0 simulations using &2 minimiza-
tion and are listed in Table 2 for each value of !. For! ) 1600,

we fix the value of A to be 0.26 without any loss of accuracy.12

This allows the other parameters to vary monotonically with !,
allowing for smooth interpolation between values of !.
Figure 5 shows the mass function measured for three values

of ! and the corresponding best-fit analytic functions. We plot
(M 2/%̄m) dn/dM rather than dn/dM to reduce the dynamic range
of the y-axis, as dn/dM values span nearly 14 orders of magni-
tude. The figure shows that as ! increases the halo masses be-
come systematically smaller. Thus, from ! ¼ 200 to 3200, the
mass scale of the exponential cutoff reduces substantially. The
shape of the mass function is also altered; at! ¼ 200 the loga-
rithmic slope at low masses is *%1.85, while at ! ¼ 3200 the
slope is nearly%2. This change in slope is due to two effects. First,
the fractional change in mass when converting between values of
! is not a constant; it depends on halo mass. Because halo con-
centrations are higher for smaller halos, the fractional change is
higher at lower masses, thus steepening the mass function. Sec-
ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h%1 M+, because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
mass (e.g., Moore et al. 1999; Gao et al. 2004), and the largest11 A convenient property of the Sheth & Tormenmass function is that one re-

covers the mean matter density of the universe when integrating over all mass;
the function is normalized such that

R
f (#) d ln #%1 ¼ 1. Eq. (3) does not con-

verge when integrating to log #%1 ¼ %1. In Appendix C we present a modified
fitting function that is properly normalized at all ! but still produces accurate
results at z ¼ 0.

12 Although a four-parameter function is required to accurately fit the data at
low!, at high overdensities the error bars are sufficiently large that a degeneracy
between A and a emerges, and the data can be fit with only three free parameters,
given a reasonable choice for A.

Fig. 5.—Measured mass functions for all WMAP1 simulations, plotted as
(M 2/%̄m) dn/dM against logM . The solid curves are the best-fit functions from
Table 2. The three sets of points show results for! ¼ 200, 800, and 3200 ( from
top to bottom). To provide a rough scaling betweenM and #%1, the top axis of the
plot shows#%1 for thismass range for theWMAP1 cosmology. The slight offset be-
tween the L1280 results and the solid curves is due to the slightly lower value of
"m ¼ 0:27.
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the fractional change in mass when converting between values of
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ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h%1 M+, because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
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Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
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an extrapolation of more 
than 10 orders of magnitude!

10−9, 10−6 h−1 M⊙ ?

Ingredients:
1. Halos mass function
2. Halos density profile (NFW, Einasto, etc ...)
3. Halos concentration 
+ all of the above for subhalos 

> 106 h−1 M⊙

ρ(z, Ω̂) = ρ̄(z)∆(z, Ω̂)

(Sefusatti, DSU13)

Simulations	  do	  
not	  resolve	  the	  
whole	  hierarchy	  
of	  structure	  
formation…	  
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Two	  approaches	  taken	  so	  far:	  
	  

1)	  Power-‐law	  extrapolations	  below	  the	  resolution	  limit.	  

2)	  Physically	  motivated	  c(M)	  models	  that	  take	  into	  account	  the	  growth	  of	  structure	  
in	  the	  Universe	  (tuned	  to	  match	  simulations	  above	  resolution	  limit).	  

15	  

How can we know about  
the internal properties (a.k.a. concentrations) 

of  the smallest halos? 

Power-‐law	  extrapolations,	  e.g.:	  
Springel+08,	  Zavala+10,	  	  

Pinzke+11,	  Gao+12	  
	  

Non	  power-‐law	  extrapolations,	  e.g.:	  
Lavalle+08,	  Kuhlen+08,	  

Kamionkowski+10,	  Pieri+11	  
	  

See	  also	  Zavala+13	  
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Figure 1. Comparison of the different models used to calculate the enhancement of DM annihilation
signal due to structure formation; ∆2(z) based on the Millennium II simulation (MSII-models) [38]
and the semi-analytic model (BulSub) [23]. All the enhancement factors ∆2(z) are multiplied by the
factor (1 + z)3/h(z) in order to reflect the relevant part of the integrand in equation (2.1) we want to
illustrate.

gives significantly lower optical depth. For z ≥ 1 the difference to the older model [69] is large
for gamma-ray energies E0 � 20 GeV, and for higher energies the difference is even larger and
their deviation start at much lower redshifts. We show that the choice of absorption model
plays a role for the DM limits when the limits are set by the gamma-ray spectrum in the high
energy end of the Fermi-LAT measurement. We comment further on this in sections 3 and 5.

2.2 Galactic

In addition to an extragalactic DM signal, there could be a significant contribution from
pair annihilations along the line of sight through the DM halo in which the Milky Way
is embedded. Current N-body simulations show highly galactocentric smooth DM density
profiles, extending far beyond the visible Galaxy, and with the main halo hosting a large
amount of substructures in form of subhalos (which themselves contain subhalos) [19, 31].

The Galactic main halo’s DM density profile would by itself, from an observer on Earth,
give rise to a very anisotropic DM annihilation signal.3 The DM annihilation signal from the
Galactic substructures, however, has a completely different morphology and could potentially
produce a fully isotropic signal. This is because the flux is proportional to the number den-
sity distribution of subhalos, and this distribution is much less centrally concentrated than

3In [70] it was also argued that without, e.g., a substructure signal enhancements, the observation of the
inner degrees of the Milky Way is typically expected to always reveal a DM signal prior to a observed DM
gamma-ray signature in the IGRB measurment.

– 5 –

Most	  optimistic	  
c(M)	  power-‐law	  
extrapolation	  

Semi-‐analytical	  

Conservative	  
power-‐law	  

extrapolation	  

Only	  resolved	  
halos	  in	  MSII	  

3 orders of mag! 
Are	  all	  these	  scenarios	  
realistic,	  i.e.,	  well	  
motivated	  in	  ΛCDM?	  

Previously,	  this	  was	  the	  common	  picture:	  

In	  our	  work,	  we	  will	  drastically	  lower	  these	  uncertainties	  by	  means	  of:	  
	  

	  -‐	  A	  better	  understanding	  at	  small	  halo	  masses,	  thanks	  to	  both	  recent	  
theoretical	  and	  numerical	  developments.	  
-‐ Two	  independent	  and	  complementary	  approaches.	  
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We	  compute	  it	  in	  two	  ways:	  

1)  Halo	  model	  (HM):	  implies	  to	  describe	  the	  internal	  properties	  of	  individual	  

halos	  and	  subhalos,	  and	  their	  cosmic	  evolution.	  	  

	  à	  OUR	  BENCHMARK	  MODEL	  

2.   Non-‐linear	  matter	  Power	  Spectrum	  (PS):	  directly	  measured	  in	  simulations.	  	  

	  à	  Good	  to	  study	  uncertainties	  (only	  one	  quantity	  extrapolated)	  

Disclaimer:	  both	  approaches	  use	  extrapolations	  over	  several	  orders	  of	  magnitude	  

down	  to	  the	  smallest	  predicted	  mass	  scales.	  

Flux	  multiplier:	  approaches	  



Halo mass 
function 

Halo masses  
and concentrations 

[MASC	  &	  Prada,	  2014,	  MNRAS	  accepted]	  

HALO	  MODEL	  (I):	  bAsIcS	  

2 Theoretical predictions for cosmological and89

isotropic dark matter annihilation signals90

The extragalactic gamma-ray flux dφ/dE produced in annihilations of DM particles with

mass mDM and self-annihilation cross section �σv�, over cosmological redshifts z is given

by
1
[14, 15, 16]:

dφ

dE0
=

c �σv�(ΩDMρc)
2

8πm
2
DM

�
dz

e
−τ(E0,z)(1 + z)

3
ζ(z)

H(z)

dN

dE

���
E=E0(1+z)

(1)

where c is the speed of light, ΩDM is the current DM abundance relative to the critical91

density ρc, H(z) is the Hubble parameter or expansion rate, and dN/dE is the spectrum of92

photons per DM annihilation. The function τ(E, z) parametrizes the absorption of photons93

due to the extragalactic background light. The flux multiplier ζ(z), which is related to the94

variance of DM density fluctuations in the Universe and measures the amount of DM95

clustering at each given redshift, is the most uncertain quantity in this problem. It can be96

expressed both in real space, making use of the so called Halo Model (HM) approach [17],97

and in the Fourier space by means of the Power Spectrum (PS) approach [18].98

In the HM framework, ζ(z) is calculated by summing up the contributions to the

annihilation signal from individual halos of mass M from all cosmic redshifts, �F (M, z)�,
and for all halo masses, i.e.:

ζ(z) =
1

ΩDMρc

�

Mmin

dM
dn

dM
M

∆v(z)

3
�F (M, z)� , (2)

where ∆v(z) is the mean halo over-density with respect to the mean density of the Universe

which is used to define the virial radius of the halo, Rv, at every redshift, and
dn
dM is the

halo mass function. The latter is normalized by imposing that all mass in the Universe

resides inside halos (see [14] for more details). �F (M, z)� in turn depends on the DM halo
density profile and the halo size. Halo density profiles are measured in N-body cosmological

simulations, with the most recent results favoring cuspy NFW [19] and Einasto halos

[20, 21], while some astrophysical observations favor cored halos, e.g., Burkert density

profiles [22]. The density profile κ can be easily expressed in terms of a dimensionless

variable x = r/rs, rs being the radius at which the effective logarithmic slope of the

profile is −2, or scale radius. In this prescription, Rv is usually parametrized by the halo
concentration cv = Rv/rs and the function F can be written as follows:

F (M, z, cv) ≡ c
3
v(M, z)

� cv
0 dx x

2
κ
2
(x)

�� cv
0 dx x2 κ(x)

�2 , (3)

More realistically F is an average over the probability distribution of the relevant param-99

eters (most notably cv). Note that the above expression depends on a third power of the100

concentration parameter. It is measured in simulations that the halo mass function and101

halo concentration are inversely proportional to halo mass and consequently the flux mul-102

tiplier ζ(z) given by Eq. (2) turns out to be dominated by small mass halos (as we will103

discuss in Section 2.1). It was observed in simulations that halos typically contain pop-104

ulations of subhalos, possibly characterized by different mean values of parameters. The105

signals from subhalos is typically included by expanding Eq. 2, see [14].106

1We assume here that thermally averaged annihilation cross section is velocity independent and that
DM are self conjugated particles.

5

Sum	  of	  DM	  annihilations	  in	  all	  halos,	  at	  all	  cosmic	  epochs.	  

Planck	  cosmology.	  
	  

Prada+12	  concentration-‐
mass	  model.	  

	  
NFW	  DM	  density	  profiles	  

	  
Mmin	  =	  10-‐6	  Msun	  

	  
Tinker+08	  HMF,	  with	  z=0	  

parameters	  as	  in	  Prada+12.	  
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The flattening of the concentration-mass relation and implications for the boosts 3
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Figure 1. Top panel: Current knowledge of the median concentration-mass relation at z = 0 for all halo masses available in the
literature from different simulation data sets, i.e. from the smallest Earth-like DM microhalos predicted to exist in the CDM universe
(∼10−6h−1M"), up to the largest cluster-size halos (∼1015h−1M"). At the high-mass end, the results from Bolshoi (blue circles) and
MultiDark (purple circles) are shown. The two empty black squares at ∼109h−1M" and the three filled black squares at ∼108h−1M"

were derived from Ishiyama et al. (2013) and Coĺın et al. (2004), respectively. Another individual ”Draco-like 108h−1M" halo is also
plotted as a green pentagon (Moore et al. 2001). A couple hundreds dwarf halos with masses ∼106 – 109 h−1M" (red triangles) were
extracted from the VL-II data (Diemand et al. 2008). At the low-mass end, we show the microhalo results taken from Diemand et al.
(2005) (orange filled diamonds) and Anderhalden & Diemand (2013) (orange empty diamonds) for individual halos, as well as those
recently reported by Ishiyama (2014) for a sample of thousands of microhalos (empty black triangles). We also provide the upper limit
to halo concentrations obtained by Diemand et al. (2005) in the range 10−6 – 10 h−1M" (pink dotted line). The P12 concentration
model (Prada et al. 2012) is shown with a solid line. The shaded gray region represents a typical 1σ concentration scatter of 0.14 dex
centered on the P12 model. The dashed curve represents the updated M08 version (Macciò, Dutton, & van den Bosch 2008) of the
B01 toy concentration model (Bullock et al. 2001). All concentration values but those from MultiDark, Bolshoi and VL-II, have been
extrapolated down to z = 0 by means of the (1 + z) correction factor. Bottom panel: Same data set but displayed in the c – σ−1 plane,
which allows for a more detailed analysis and comparison between simulations and model in terms of the amplitude of linear density
fluctuations. The concentration values shown are those in the original set of simulations at the corresponding redshift where they were
measured, while the σ(M) values are the ones that halos would have at present time for those values of the concentration, see text for
further details. Solid (dashed) line refers to the σ(M) range in which the P12 model was (not) tested against simulations.
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HALO	  MODEL	  (II):	  substructure	  treatment	  

6 Sánchez-Conde & Prada

Mmin!10"12M!, Α!2
Mmin!10"6M!, Α!2
Mmin!10"12M!, Α!1.9
Mmin!10"6M!, Α!1.9

6 8 10 12 141

2

5

10

20

50

100

200

Log10 M200 !M!"

Bo
os
t

This work
Sánchez"Conde$11
Gao$12

6 8 10 12 140.1

1

10

100

1000

Log10 M200 !M!"

Bo
os
t

Figure 2. Left panel: Halo substructure boosts as a function of host halo mass obtained with the P12 c(M) model, for different values
of minimum subhalo mass, Mmin, and slope of the subhalo mass function, α. From bottom to top, the different lines correspond to
(Mmin, α) = (10−6M", 1.9), (10−12M", 1.9), (10−6M", 2), (10−12M", 2). The solid line corresponds to our fiducial boost model, i.e.,
Mmin =10−6M" and α = 2. Right panel: Comparison between the substructure boosts given by our fiducial boost model (solid line),
and that computed by Sánchez-Conde et al. (2011) and Gao et al. (2012) (dashed and dotted lines, respectively).

signal would imply B = 0, while a value of B = 1 would
mean that substructures contribute to the annihilation lu-
minosity at the same level than the parent halo. We show in
Fig. 2 the results of computing the substructure boost with
Eq.(2) and using the c(M) parametrization given in Eq.(1)
for the P12 model. We adopt Mmin = 10−6M" and α = 2
for our fiducial substructure boost model7, but we also show
the result of varying these parameters in the left panel of
Fig. 2. In our computation of the substructure boosts, only
the first two levels of substructure were included, i.e., subha-
los and sub-subhalos, since according to our checks the third
substructure level contributes only less than 5% to the total
boost in most cases (reaching ∼8% in the most extreme case
adopting Mmin = 10−12M" and α = 2). The marginal rele-
vance of level 3 was already pointed out by Mart́ınez et al.
(2009), who analytically predicted a ∼2% signal increase
from level 3 and beyond. We note that we find slightly higher
contributions from this level though. Level 2, however, can
contribute up to one third of the boost value given in our
fiducial model for the largest halo masses.

The right panel compares our fiducial boosts with
those previously derived by Sánchez-Conde et al. (2011) and
Gao et al. (2012). As it can be clearly seen, the boosts
yielded by the P12 model qualitatively agree with previous
estimates that also used physically motivated c(M) mod-
els well below the mass resolution limits of N-body cosmo-
logical simulations (Lavalle et al. 2008; Kuhlen et al. 2008;
Pieri et al. 2008; Mart́ınez et al. 2009; Kamionkowski et al.
2010; Charbonnier et al. 2011; Sánchez-Conde et al. 2011;
Kuhlen, Vogelsberger, & Angulo 2012; Nezri et al. 2012;
Anderhalden & Diemand 2013; Zavala & Afshordi 2013).

7 The choice of α = 2 for our fiducial model is motivated
by theoretical expectations in the Press-Schechter theory for
structure formation, see e.g. Giocoli, Pieri, & Tormen (2008);
Blanchet & Lavalle (2012).

These are, however, in clear contradiction with that found
in works that implicitly adopted a power-law c(M) ex-
trapolation to lower masses, e.g., Springel et al. (2008);
Zavala, Springel, & Boylan-Kolchin (2010); Pinzke et al.
(2011); Gao et al. (2012). For Milky Way-size halos, our
fiducial substructure boost model yields a boost of ∼15 ver-
sus ∼77 in the model by Gao et al. (2012). The difference is
even more pronounced for larger halos, as expected. For a
rich 1015M" galaxy cluster, for instance, we obtain a boost
of ∼35, while Gao et al. (2012) estimated ∼1100, i.e. about
1.5 orders of magnitude larger! This disagreement would
have been even larger if we had compared both approaches
for Mmin = 10−12M" instead of 10−6M": our boosts do not
change drastically by including smaller substructures, while
power-law-based substructure models are very sensitive to
the adopted value of Mmin. On the other hand, note that
we do expect a substantial flux increase of a factor of a few
due to DM substructure in dwarf galaxies. We recall, how-
ever, that strictly speaking our results are only applicable to
field halos; for the dwarf galaxies satellites of the Milky Way,
for example, tidal stripping may have removed most of the
substructure in the outer regions of these objects – where
subhalos typically reside – in this way significantly decreas-
ing this substructure boost value.8 This decrease may be
compensated though by the fact that subhalos are known to
exhibit larger concentrations compared to that of field ha-
los (Diemand et al. 2008). We conclude that the final boost
value for these objects is not clear at the moment and should
be addressed in future work, our results in Fig. 2 represent-
ing a first order estimate.

Finally, we provide a simple parameterization for the
substructure boost factors implied by the P12 concentra-

8 Actually, sub-subhalo abundance is found to be reduced con-
siderably compared to subhalo abundance (at a fixed mass), see
e.g. Figs. (16) and (17) in Springel et al. (2008).

c© 2002 RAS, MNRAS 000, 1–??

[MASC	  &	  Prada,	  2014,	  MNRAS	  accepted]	  

•  Halo	  substructure	  expected	  at	  all	  mass	  scales	  down	  to	  Mmin	  
	  à	  enhancement	  (boost)	  of	  the	  DM	  signal	  expected	  

•  Relevant	  parameters:	  subhalo	  mass	  function	  and	  minimum	  subhalo	  mass.	  

We	  adopt	  the	  fiducial	  model	  
in	  MASC	  &	  Prada	  (2014)	  
	  
It	  assumes	  that	  subhalos	  
have	  similar	  internal	  
properties	  as	  main	  halos.	  

L	  =	  Lhost	  *	  [1+B],	  so	  	  
	  	  B=0	  à	  no	  boost	  

	  	  	  	  	  	  	  	  	  	  	  B=1	  à	  Lhost	  x	  2	  	  due	  to	  subhalos	  
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POWER	  SPECTRUM	  APPROACH	  As noted in [23] the flux multiplier can also be expressed directly in terms of the non-
linear matter power spectrum PNL (the two-point function of the Fourier transform of the
matter density field):

ζ(z) ≡ �δ2(z)� =
� kmax d k

k

k3PNL(k, z)

2π2
≡

� kmax d k

k
∆NL(k, z), (4)

where ∆NL(k, z) = k3PNL(k)/(2π2) is the dimensionless nonlinear power spectrum and107

kmax(z) is the scale of the smallest structures which still significantly contribute the cos-108

mological annihilation signal. Loosely speaking, M = 4/3 πρh (π/k)3 with ρh the charac-109

teristic density of the DM halo. Therefore kmax is the PS correspondence to minimal halo110

mass Mmin in Eq. (2) in a HM prescription.111

The extrapolation to mass or k scales beyond the resolution of N-body simulations is112

the source of the biggest uncertainty in the prediction of the extragalactic signal of DM113

annihilation, since the smallest scales expected for the WIMP models are far from being114

probed either by astrophysical observations or simulations. Thus, the way these extrapo-115

lations to the smallest masses are performed can lead to completely different results of the116

relevant quantities. Typical expectations for the minimum halo masses in WIMP models117

are in the range Mmin ∈ [10−9, 10−4]M⊙ (see [24, 25, 26] and refs. therein), while we only118

have observational evidence of structures down to 107 M⊙ [27] implying that extrapolations119

of at least >∼ 10 orders of magnitude in halo mass (or >∼ 3 orders of magnitude in k) are120

probably needed.121

Both ways of expressing ζ, (2) and (4) have their advantages and disadvantages. While122

(2) is given in real space and thus deals with ‘intuitive’ quantities, it depends to a large123

extent on several poorly constrained parameters, most notably concentration and halo mass124

function. This is particularly true for the smallest halos, which, as said, are expected to125

dominate. The same is applicable to the subhalo population, whose internal properties126

and abundance are even less understood. On the other hand, (4) depends only on one127

quantity directly measured in simulations2 and can be extrapolated based on simple scale128

invariant arguments, but lacks the intuitive understanding of breaking the structure down129

to individual halos and subhalos, relevant e.g. when comparing the expected signals from130

Milky Way substructures with the total cosmological one.131

In this work, we will use both of these two approaches in parallel: the HM to define132

our benchmark model following simple but well motivated arguments for the choice of the133

relevant ingredients, and the PS framework to calculate the associated uncertainty due134

to extrapolation to small (unresolved) scales (since in this case the extrapolation simply135

affects one quantity which is unambiguously defined and measured in simulations).136

2It is measured using only a matter density map, without invoking concept of halos and without relying
on standard halo finders.
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Figure 4. Same as Fig. 3 but for the limits defined in equations (8) and (10).

their properties. In fact, this is true as well for the typical ingredients
required by the HM approach, such as the mass function, the halo
profile, etc. However, the dependence on redshift of the uncertainty
in the determination of such quantities is not accounted for (instan-
taneous virialization and convergence to asymptotic universal halo
profile are for example assumed). Note however how the minimum
condition enforced via equation (6) prevents the error to grow too
much, with a moderating effect that is more pronounced at high z

and high k.
Figs 3 and 4 show as well, for comparison, the extrapolation of

the HF and RHF fitting formulas, together with the corrected ver-
sion of equation (2) enforcing the stable clustering prediction. Both
the extrapolated values of HF and RHF exceed the bounds derived
from the simulations. This is not surprising since, as mentioned
before, the large-k asymptotic behaviour has not been considered
in the fitting procedure. On the other hand, the stable clustering
assumption provides a ‘best guess’ extrapolation that nicely falls
within the estimated limits, both from MS and MSII, for all red-
shifts considered, even in the case of the tighter aggressive limits
of equations (8) and (10). This is evident as well confronting the
values obtained for ζ (z) with the allowed interval as reported in
Table 1. It is important to note that at the highest k resolved by the

MSII simulation, the MSII power spectrum does fall within the esti-
mated uncertainty band (blue/dark shadowed region) deduced from
MS data both in Figs 3 and 4. This is a further consistency check of
the physically reasonable behaviour of the uncertainty extrapolation
schemes proposed.

These results are visualized as well in Fig. 5 where the uncer-
tainty on the dimensionless combination (1 + z)3 ζ (z) H0/ H(z)
estimated from the extrapolated MS data (blue regions) and MSII
data (red regions) is shown as a function of redshift. Black curves
correspond to the RHF+SC prediction. Two different values for
the integration cut-off are considered, kmax = 106 and 108 h Mpc−1

(continuous and dashed curves, respectively). All extrapolations
assume k" = k1 per cent. The left-hand panel assumes the more
conservative bounds of equations (5) and (6) while the right-hand
panel assumes equations (8) and (10). Clearly, the lower bounds
are not affected much by the two orders of magnitude difference in
the cut-off assumed here, while the upper bounds change by up to
about a factor of 10, depending on the redshift, in the conservative
extrapolation case. Notice that we limit the plots to the four outputs
available, z = 0, 1, 2 and 6 and that we have no upper bounds
estimated from MS at redshift z = 6, so we stop at z = 2. The es-
timated uncertainties obviously depend as well on the choice of k",
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We	  follow	  Sefusatti+14,	  which	  uses	  the	  
Millenium	  simulations	  (MS	  and	  MS-‐II).	  	  
	  
Results	  scaled	  to	  Planck	  cosmology.	  
	  
Extrapolation	  to	  low	  masses	  with	  MS-‐II.	  
	  
Substructure	  naturally	  accounted	  for.	  

FLUX 
MULTIPLIER 

Integral over the non-linear 
matter power spectrum, PNL 

Sefusatti,	  Zaharijas	  et	  al.,	  MNRAS	  (2014)	  

Adimensional PNL  

MAX	  extrapolation	  to	  the	  lowest	  scales	  

MIN	  extrapolation	  to	  the	  lowest	  scales	  

ΔNL	  is	  measured	  in	  simulations.	  



Normalized	  flux	  multiplier	  

an uncertainty in the DM limits.282

Finally, in Fig. (3) we explore the dependence of ζ2 on the assumed cut-off scale Mmin283

(or, equivalently, kmax(z) defined by π/rs). We perform this exercise at redshift zero,284

mainly because DM annihilations originated at low redshifts contribute the most to the285

expected extragalactic signal and gives, thus, a fair representation of behavior of the total286

signal. Note that while the minimal (PS (MIN)) type of extrapolation in the PS approach287

(Eq. (5)) is quite insensitive to the choice of Mmin, the same is not true for the maximal288

(PS (MAX)) extrapolation, i.e., Eq. (6). Overall, the agreement between HM and PS289

predictions is good, the former being within the uncertainty bands deduced in the latter290

approach (except marginally at the highest (unrealistic) minimum halo masses tested).291
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Figure 1: Normalized ζ2 as a function of redshift. A value of Mmin = 10−6 h−1 M⊙ was
used in both the PS (gray) and HM predictions (red). The benchmark HM model detailed
in Section 2.1 is shown by the red solid line. The red dashed line corresponds to the case
in which the slope of the subhalo mass function varies from the fiducial α = 2 to 1.9 (i.e.,
less substructures). The dotted line, labeled PS (MIN), shows the minimum approximation
from Equation 5 in the PS approach, while the dashed line, PS (MAX), shows the maximum
approximation given by Equation 6.
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HM	  vs.	  PS	  predictions	  (I)	  
redshift	  evolution	  

PRELIMINARY 

Both	  the	  PS	  and	  HM	  results	  
are	  fully	  consistent	  with	  each	  
other.	  
	  
Benchmark	  HM	  (solid	  line)
within	  PS-‐min	  and	  PS-‐max,	  
as	  expected.	  



HM	  vs.	  PS	  predictions	  (II)	  
dependence	  on	  minimum	  halo	  mass	  

PRELIMINARY 
Normalized	  flux	  multiplier	  

Good	  agreement	  except	  at	  
the	  highest	  (probably	  
unrealistic)	  Mmin	  tested	  
	  
PS-‐min	  nearly	  insensitive	  to	  
Mmin.	  Not	  true	  for	  PS-‐max.	  
	  
Comparison	  at	  z=0	  a	  fair	  
estimate,	  since	  most	  of	  the	  
DM	  signal	  comes	  from	  low	  z.	  



OUR	  BENCHMARK	  MODEL:	  
calculated	  in	  Halo	  Model	  
approach	  using	  the	  most	  
up-‐to-‐date	  parameters.	  	  

UNCERTAINTY	  BAND:	  	  
	  Estimated	  by	  means	  of	  the	  non-‐linear	  
matter	  Power	  Spectrum	  approach.	  It	  
will	  directly	  translate	  into	  uncertainties	  
in	  our	  DM	  limits.	  

factor ~17 

HM	  vs.	  PS	  predictions	  (III)	  
(example	  of)	  DM	  annihilation	  fluxes	  

PRELIMINARY 

[500	  GeV	  WIMP	  annihilating	  to	  bb	  quarks]	  



Smooth	  component:	  	  
	  

	  -‐	  NFW	  DM	  density	  profile.	  
	  -‐	  20	  kpc	  for	  the	  scale	  radius;	  local	  DM	  density	  set	  to	  0.2	  GeV	  cm-‐3	  
	  -‐	  For	  |b|>	  20	  deg,	  uncertainties	  in	  the	  inner	  slope	  not	  important.	  	  
	  -‐	  Main	  uncertainty	  coming	  from	  overall	  normalization	  (factor	  2-‐4).	  
	  -‐	  A	  factor	  ~16	  difference	  between	  20	  and	  90	  degrees	  of	  latitude.	  

	  

	  à	  Anisotropic	  signal:	  we’ll	  treat	  it	  as	  an	  additional	  foreground!	  
	  
	  

•  Would	  the	  Galactic	  DM	  signal	  be	  sufficiently	  isotropic?	  

à if	  so,	  we	  will	  add	  it	  to	  the	  extragalactic	  signal	  when	  setting	  the	  DM	  limits.	  

à If	  not,	  we	  will	  treat	  it	  as	  an	  additional	  foreground.	  	  

•  Two	  distinct	  components:	  smooth	  DM	  density	  profile	  and	  Galactic	  subhalos.	  

24	  

Galactic	  DM	  annihilation	  signal	  ?	  

Impact on DM limits will be discussed in Zaharijas’s talk 



à	  Sufficiently	  isotropic	  signal:	  added	  to	  the	  extragalactic	  signal	  when	  setting	  DM	  limits.	  

Substructures intensity 
relative to average value 

at |b|>20 deg 
 

Factor ~2 anisotropy 
 

In other prescriptions, 
only 10% anisotropy 

Galactic	  DM	  annihilation	  signal:	  substructure	  	  

PRELIMINARY 

Following	  MASC	  &	  Prada	  (2014),	  we	  assume	  two	  Galactic	  substructure	  scenarios:	  
	  	  
	  1.	  Annihilation	  boost	  of	  a	  factor	  3	  (Minimal	  BGal,substructure).	  	  
	  2.	  Annihilation	  boost	  of	  a	  factor	  15	  (Benchmark	  BGal,substructure).	  

	  

(Both	  for	  Mmin=10-‐6	  Msun,	  but	  assuming	  different	  slopes	  of	  the	  subhalo	  mass	  function)	  
	  

Impact on DM limits will be discussed in Zaharijas’s talk 



Remarks	  

26	  

•  Goal:	  to	  use	  the	  new	  LAT	  IGRB	  spectrum	  up	  to	  820	  GeV	  to	  set	  DM	  limits.	  
	  
-‐  New	  predictions	  for	  the	  cosmological	  DM	  annihilation	  signal,	  taking	  full	  

advantage	  of	  our	  latest	  knowledge	  of	  structure	  formation	  in	  the	  Universe.	  

-‐  Two	  different	  theoretical	  approaches:	  Halo	  Model	  and	  Power	  Spectrum,	  
which	  remarkably	  agree.	  

-‐  Theoretical	  uncertainty	  band	  drastically	  narrowed	  down	  to	  a	  factor	  <20.	  
	  
-‐  Galactic	  (both	  smooth	  and	  subhalos)	  and	  extragalactic	  DM	  emission	  

treated	  in	  a	  consistent	  way	  for	  the	  first	  time.	  	  
-‐  Smooth	  contribution	  added	  as	  additional	  foreground.	  
-‐  Subhalo	  contribution	  assumed	  to	  be	  isotropic.	  

OUR	  DM	  LIMITS	  WILL	  BE	  PRESENTED	  BY	  G.	  ZAHARIJAS	  AFTER	  THIS	  TALK!	  
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