Arrival distribution of ultra-high-energy cosmic rays and implications to their sources

Hajime Takami KEK, JSPS Fellow

Cosmic rays

UHECR Source Candidates

e.g., Biermann & Stritmatter '87, Takahara '90, Rachen & Biermann '93, Farrar & Gruzinov '09, Dermer+ '09, Pe'er+ '09, HT & Horiuchi '11, Murase+ '11

e.g., Blasi+ '00, Arons '03, Kotera '11, Fang+ '12

Only extreme phenomena or objects in the universe can produce the highest energy cosmic rays.

e.g., Waxman '95, Vietri '95, Murase+ '08, Wang+ '09

e.g., Norman+ '95, Kang+ '96, Inoue+ '07

Estimated Composition of UHECRs

The recent results are significantly inconsistent within the quoted systematic errors.

A joint working group of Auger and TA is collaborating to solve this problem.

Propagation of UHECRs

Cosmic magnetic fields deflect the propagation trajectories of UHECRs and make it difficult to identify sources by UHECR experiments

UHECR Anisotropy

Hints of anisotropy have been reported, but no clear evidence of point-like sources so far.

Statistical approach

Anisotropy and UHECR Source Number Density

UHECR Source Candidates

e.g., Biermann & Stritmatter '87, Takahara '90, Rachen & Biermann '93, Farrar & Gruzinov '09, Dermer+ '09, Pe'er+ '09, HT & Horiuchi '11, Murase+ '11

e.g., Blasi+ '00, Arons '03, Kotera '11, Fang+ '12

Only extreme phenomena or objects in the universe can produce the highest energy cosmic rays.

e.g., Waxman '95, Vietri '95, Murase+ '08, Wang+ '09

Propagation of UHECRs from a Transient Source

Observational features are different among energies.

✓ Arrival time is delayed, and depends on energies.
✓ Intrinsic burst duration < apparent CR-burst duration
✓ Apparent duration also depends on energies.

Apparent Source Number Density of UHECRs

A stronger anisotropy appears at higher energies (even without considering the GZK mechanism).

The dependence of $n_s(E)$ is evidence of transient generation of UHECRs.

 $n_s(E)$ should be estimated in at least two energy ranges.

Evolution of anisotropy

E_p > 6 x 10¹⁹ eV, n_s = 10⁻⁵ Mpc⁻³

HT & Sato 2008

Constraints on ps and Energy Budget

n_s(E) from huge UHECR experiments and τ(E) from understanding cosmic magnetic fields allows us to constrain transient UHECR sources by comparing their restricted properties with parameters of known astrophysical objects.

Anisotropy in a heavy-nuclei-dominated case

Hajime Takami | KICP workshop "High-Energy Messenger", KICP, the university of Chicago, USA, June 10, 2014

• The origin of ultra-high-energy cosmic rays is still unknown, but some hints have appeared in their arrival distribution.

• Anisotropy indicates source number density: $n_s \sim 10^{-4}$ Mpc⁻³ for steady sources in the cases of light composition / weakly magnetized universe. This value is much larger than blazars, radio galaxies, and clusters of galaxies.

• An anisotropy study in narrow consecutive energy bins can reveal the transient generation of UHECRs.

• Conservative estimation of the UHECR generation rate and related energy output can be achieved by independent studies on extragalactic magnetic fields. $\frac{Filament}{B \sim 10 nG} \quad (e.g., Ryu et al. '08), \\ assuming turbulence with <math display="inline">\lambda_c \sim 100 \ kpc$

<u>GMF</u> BS-S (Alvarez-Muniz et al. '02, see also Pshirkov et al. '11 for a newer model)

 $\frac{Cluster}{B \sim 1} \mu G, \beta \text{-model} + \\ \text{turbulence with } \lambda_c \sim$

100 kpc (e.g., de Marco et al. '06),

Void

B $\lambda_c^{1/2} < (10 \text{ nG}) (1 \text{ Mpc})^{1/2}$ (e.g., Ryu et al. '98, Blasi et al. '99) B > $10^{-17} \sim -18 \text{ G}$ (e.g., Dolag et al. '11, Dermer et al. '11, Takahashi et al. '12, see also Ando & Kusenko '10 and Neronov et al. '11)

HT & Murase (2011)