3D integrated and digitally read-out solid-state photo-multiplier – proposal for wafer scale focal planes

Grzegorz (Gregory) Deptuch
Juan Estrada
Fermilab

KICP workshop: "Imaging the Extreme Universe: Solid-state cameras for Astroparticle Physics"
9-10 May, 2013
Outline

• Introduction:
 - 3D-IC definition
 - 3D-IC advantages
 - 3D by Fermilab (with industry)
 - Proof that this works

• Wafer scale imager,
 example of X-ray camera proposed for Photon Science

• 3D Digitally read out SiPM (3DDigSiPM)

• Introduction
• Concept of camera
• Proposal
• Summary
3D-IC: definition

A chip in three-dimensional integrated circuit (3D-IC) technology is composed of two or more layers of active electronic components using horizontal intra-tier and vertical inter-tier connectivity routing.

- Through Silicon Vias (TSV): small diameter vertical connectivity (not only to build electronic chips but also for attaching detectors to readouts)
- Bonding: Oxide-, polymer-, metal-, or adhesive strengthened- (W-W, C-W or C-C)
- Wafer thinning: aggressive and ultra-precise
- Back-side processing: metallization and patterning

MIT-LL 3D-IC process
FDSOI oxide-oxide bonding

Face-Face

First wafer

handle wafer

Back-Face

Via-middle

TS Vias
($\phi=1\ \mu m$)

Fermilab
3D-IC: benefits

- 3D-IC offers a transformational change to address current roadblocks in advancing fine-grained detector, and with in-situ processing.

- 3D ROICs - complete separation of digital activity from low-noise analog parts
- 3D ROICs - uniform distribution of power supply and I/O pads on the back side
- ROICs can be integrated with sensors without bump-bonds

Strategic direction: 4 side buttable, dead-area-free detectors
‘Fermilab’ 3D-IC run

- Difference between Cu-Cu thermocompression and Cu DBI wafer bonding methods:
 - Cu-Cu not reworkable, bonding established by fusing metal pads, forgiving on surface planarity
 - Cu DBI reworkable shortly after bonding, bonding established by chemically fusing oxide surfaces, must be ultra planar

M6 Cu φ=2.7μm, d=4μm

M6 Cu φ=2.7μm, d=4μm

DBI Cu φ=1.2μm, d=4μm
‘Fermilab’ 3D-IC run

- Initial (small) efforts started with MIT-LL 3D process in 2006 (DARPA 3-tier 3D run):
 - stimulated great interest among the detector community worldwide and move to Tezzaron/GF

- 3D-IC Consortium established in late 2008, now 17 members; 6 countries: USA, Italy, France, Germany, Poland, Canada) + Tezzaron – various goals among members, activities going at slower pace but progressing

- Fermilab organized first 3D-IC MPW run for HEP

- Designs in: 05/2009; Chartered (GF) 130nm
 - Fermilab had a role of silicon broker
 - Many challenges in working with cutting edge technology; to name some: design mistakes, incompatibility of software tools (Tezzaron not Cadence), lack of 3D oriented verification, handling of databases >10GB, shifting GF requirements (DRC), changing personnel at GF, etc.

- MPW frame accepted for fab in 03/2010

130nm GF/Tezzaron wafer - FNAL MPW before 3D bonding; single mask set used to fabricate top and bottom tier chips on the same wafer; Bonding by flipping wafers over symmetry line
‘Fermilab’ 3D-IC run

SEM image of W TSVs providing contact to back-side AL pad on VIPIC1

Fabricated and tested …

VIPIC1 (3D chip for photon science XPCS at BNL) 64x64 pixel @ 80μm pitch

sparsified readout inter-tier communication

noise @ nominal bias in input transistor and with CSA replica off for gain from measurements
Wafer scale imagers using 3D-IC

Newly developed proposal of a wafer-size camera for the Advanced Photon Source at ANL

Key features
- Seamless, wafer scale (6” or 8”) imaging (focal) plane for X-ray science – single piece camera,
- 150 × 150 μm² - 100 × 100 μm² pixels,
- SiPCB technology for tapered pitch adaptation and sturdy support,
- Fast front ends, DR 1 photons – 10⁵ photons / pixel @ 8keV (up to 40pC)
- Light and simple form,
3DDigSiPM - introduction

Fully digital, scalable photonic component capable of detecting single and multi-photon bursts (time-of-arrival, intensity and position with high efficiency and purity)

What can an array of digital SiPMs do?

- act on individual cells to disable noisy ones and fine tune parameters (gain variations not important any more)

E. Charbon, FEE 2011 Bergamo, Italy
What can 3D-integrated digital SiPMs do?

SPAD in 2D

SPAD Ensemble
Voltage regulation

Over 500 transistors
ln 50 x 50 \(\mu \)m\(^2\)

SPAD/SiPM in 3D-IC technology

\(\mu \)lenses

3D SiPM

photodetection tier

readout tier

Pixel

• Process for sensors (SiPM cells) and circuits chosen to optimize both; DCR <0.1Hz/\(\mu \)m\(^2\)
• Fill factor highest possible to achieve!
• Entrance window can be as thin as tens of nanometers – for sensitivity in BLUE!
• Use of 3D-integration techniques allow building large area seamlessly tiled devices
• Electronics may have many variants!

• IC process to get low DCR and be suitable for highly packed circuits is problematic;
SPADs in dedicated technology:
0.1~1Hz/\(\mu \)m\(^2\),CMOS SPADs: 1~10Hz/\(\mu \)m\(^2\)
• Poor fill factor, more electronics per pixel = less sensitive area!
What can 3D-integrated digital SiPMs do?

DCR (data for Philips 2D digital SiPM)

- Dark counts per second at 20° C and 3.3V excess voltage
- ~95% good diodes (DCR close to average)
- Typical dark count rate at 20° C and 3.3V excess voltage: ~150Hz / diode
- Dark count rate drops to ~1-2Hz per diode at -40° C

PHILIPS
The Digital Silicon Photomultiplier Prototype

IEEE Nuclear Science Symposium / Medical Imaging Conference, Knoxville, November 4, 2010

Cell Electronics may contain configuration bit allowing switching off noisy cells
Concept of camera

Fully digital, scalable photonic component capable of detecting single and multi-photon bursts (time-of-arrival, intensity and position with high efficiency and purity)

Top view of a fragment of a SiPM wafer from a foundry specialized in SiPM fabrication

Top view of a fragment of an SiPM wafer after post-foundry processing with added TSVs threading signals through a thinned wafer
Add another component: SiPCB and you obtain Large-scale self-supporting single photon sensor camera.
Flow or processing for preparing SiPMs with TSVs starting with wafers containing just SiPM diodes.
3DDigSiPM - proposal

• Using 3D-IC technology decouples tasks – optimization: process for sensor-SiPM and process for ASIC at uncompromised FF,

• Cell circuitry may have many flavors and various functionalities

• Act on individual cells to disable noisy ones and fine tune parameters (gain variations not important any more)

• Every SiPM diode can be controlled individually; e.g. active quenching to eliminate after-pulsing
3DDigSiPM - proposal

Industry is very interested to collaborate on development of this new imaging technology, (example below)

Group, like ours is able and is interested in developing 3DDigSiPM

Dear Dr. Grzegorz Deptuch,

If your proposal entitled “Multi-Purpose, 3D Integrated and Digitally Read-Out Solid-State Photo-Multiplier”, is selected for funding under the DOE Office of Science Early Career Research Program, it is our intent to collaborate in this research by offering our expertise of building high quality and high sensitivity Geiger-mode avalanche diodes on Silicon wafers that, delivered from us, could be used as intermediate components for building 3D-integrated assemblies by you. Outcome of this work is interesting for us and we are looking forward to building together and delivering wafers with optimized layouts of arrays of diodes for post-foundry processing to construct large area, 3D-integrated and digitally readout focal planes.

Thank you for the opportunity to participate.

Sincerely,

But good project requires good funding

Subject of this year DOE's Early Career Research Program - no luck

http://science.energy.gov/news/in-the-news/2013/05-07-13/ "WASHINGTON, DC – DOE’s Office of Science today announced that 61 scientists from across the nation will receive up to $15.3 million in funding for research as part of DOE’s Early Career Research Program. The effort, now in its fourth year, is designed to bolster the nation's scientific workforce by providing support to exceptional researchers during the crucial early career years, when many scientists do their most formative work."

hm... $15.3M/61=$250k /yr= actually pretty discouraging;
technology is expensive but defines the future, need to find funding elsewhere
3DDigSiPM - summary

- 3D Dig SiPM are pixel detectors sensitive to single photons
- They allow per pixel (μcell – SiPM nomenclature) control and processing electronics; (TDC, counting, sparsified readout, etc.)
- Large area single piece focal planes with extended functionalities and fast readout