THE COSMOLOGICAL PHYSICS OF
STAR-FORMING GALAXIES
AND THE GAMMA-RAY BACKGROUND

Brian Fields
University of Illinois
THE COSMOLOGICAL PHYSICS OF
STAR-FORMING GALAXIES
AND THE GAMMA-RAY BACKGROUND

-Conclusions-

★ star formation guaranteed gamma rays
★ Fermi/GLAST “near field”:
 Milky Way spectrum: **feature**! calibrates extragalactic signal
 will detect Local Group galaxies: tests calibration (cosmic rays)
★ star-forming galaxies imprint **feature** in diffuse gamma sky
★ impact on cosmological physics
★ star-formation gamma rays & the primordial Li problem
THE COSMOLOGICAL PHYSICS OF
STAR-FORMING GALAXIES
AND THE GAMMA-RAY BACKGROUND

-Conclusions-

★ star formation ➔ guaranteed gamma rays
★ Fermi/GLAST “near field”:
 Milky Way spectrum: **feature**! calibrates extragalactic signal
 will detect Local Group galaxies: tests calibration (cosmic rays)
★ star-forming galaxies imprint **feature** in diffuse gamma sky
★ impact on cosmological physics
★ star-formation gamma rays & the primordial Li problem
Guaranteed Gamma-Rays from Star-Forming Galaxies

- star formation \rightarrow supernova explosions
- supernova shocks accelerate cosmic rays
- cosmic-ray propagation in ISM \rightarrow gamma-rays

$$pp \rightarrow \pi^0 \rightarrow \gamma \gamma$$

ergo...

- star formation \rightarrow (hadronic=pionic) gamma rays
- gamma-rays probe
 - star formation
 - cosmic-ray acceleration

Fermi/GLAST First Light Image
Excessive? Hadronic Cosmic Rays: EGRET & Milagro

Prodanovic, BDF, Beacom 2006

\[pp \rightarrow \pi^0 \rightarrow \gamma\gamma \]

symmetry about \(m(\pi^0)/2 \)

\[pp \rightarrow \pi^0 \rightarrow \gamma\gamma \]

Symmetry about \(m(\pi^0)/2 \)

Pion bump

\[pp \rightarrow \pi^0 \rightarrow \gamma\gamma \]

symmetry about \(m(\pi^0)/2 \)

pion bump

EGRET: a feature!

\[pp \rightarrow \pi^0 \rightarrow \gamma \gamma \]

symmetry about \(m(\pi^0)/2 \)

pion bump

EGRET: a feature!

...but not pion bump: masked by GeV excess
Excessive? Hadronic Cosmic Rays: EGRET & Milagro

Prodanovic, BDF, Beacom 2006

\[pp \rightarrow \pi^0 \rightarrow \gamma \gamma \]

symmetry about \(m(\pi^0)/2 \)
pion bump

* EGRET: a **feature**!

* ...but not pion bump: masked by GeV excess

* Milagro: diffuse TeV signal inconsistent w/ local cosmic rays

Unresolved point sources?
Excessive? Hadronic Cosmic Rays: EGRET & Milagro

Prodanovic, BDF, Beacom 2006

 \[
 pp \rightarrow \pi^0 \rightarrow \gamma\gamma
 \]

 symmetry about \(m(\pi^0)/2 \)

 pion bump

* EGRET: a feature!

* ...but not pion bump: masked by GeV excess

* Milagro: diffuse TeV signal inconsistent w/ local cosmic rays

 Unresolved point sources?

* Puzzles cry out for Fermi/ACTs!

GeV excess? Galactic Plane, \(40^\circ < l < 100^\circ, |b| < 5^\circ \)

TeV excess?

\[
pp \rightarrow \pi^0 \rightarrow \gamma\gamma
\]

\[
\frac{m(\pi^0)}{2}
\]
Observable: gamma-ray flux

Laboratory: the Local Group

\[
F_\gamma = \frac{\dot{N}_\gamma}{4\pi r^2} \quad \dot{N}_\gamma = \Phi_p \sigma \frac{M_{\text{gas}}}{m_p}
\]

EGRET

- only LMC detected (marginally)
- gamma flux consistent with \(\Phi_p \propto R_{\text{SN}} \)
Gamma-Ray Tests & Calibration of Star-Formation/Supernova Cosmic Rays

Pavlidou & BDF 2001

Observable: gamma-ray flux

Laboratory: the Local Group

\[F_\gamma = \frac{\dot{N}_\gamma}{4\pi r^2} \quad \dot{N}_\gamma = \Phi_p \sigma \frac{M_{\text{gas}}}{m_p} \]

EGRET

- only LMC detected (marginally)
- gamma flux consistent with \(\Phi_p \propto R_{\text{SN}} \)

Fermi/GLAST

- strong detection of LMC, SMC, M31
Gamma-Ray Tests & Calibration of Star-Formation/Supernova Cosmic Rays

Pavlidou & BDF 2001

Observable: gamma-ray flux

Laboratory: the Local Group

\[
F_\gamma = \frac{\dot{N}_\gamma}{4\pi r^2}, \quad \dot{N}_\gamma = \Phi_p \sigma \frac{M_{\text{gas}}}{m_p}
\]

EGRET

- only LMC detected (marginally)
- gamma flux consistent with \(\Phi_p \propto R_{\text{SN}} \)

Fermi/GLAST

- strong detection of LMC, SMC, M31
- possible detection of M33
Gamma-Ray Tests & Calibration of Star-Formation/Supernova Cosmic Rays

Pavlidou & BDF 2001

Observable: gamma-ray flux

Laboratory: the Local Group

\[
F_\gamma = \frac{\dot{N}_\gamma}{4\pi r^2} \quad \dot{N}_\gamma = \Phi_p \sigma \frac{M_{\text{gas}}}{m_p}
\]

EGRET

- only LMC detected (marginally)
- gamma flux consistent with \(\Phi_p \propto R_{SN} \)

Fermi/GLAST

- strong detection of LMC, SMC, M31
- possible detection of M33
- tests star-formation/gamma-ray link: supernova acceleration, confinement in spirals, dwarfs
Cosmic-Ray Sources
Across the Star-Forming Universe
Lichti, Bignami, & Paul 1978; Pavlidou & BDF 2002

Modeling the cosmic history of cosmic-ray interactions
★ supernovae as cosmic-ray sources
★ interstellar medium as targets
Cosmic-Ray Sources
Across the Star-Forming Universe
Lichti, Bignami, & Paul 1978; Pavlidou & BDF 2002

Modeling the cosmic history of cosmic-ray interactions
★ supernovae as cosmic-ray sources
★ interstellar medium as targets
★ both fixed by cosmic star formation rate

Hopkins & Beacom 2006
Cosmic-Ray Sources
Across the Star-Forming Universe
Lichti, Bignami, & Paul 1978; Pavlidou & BDF 2002

Modeling the cosmic history of cosmic-ray interactions
★ supernovae as cosmic-ray sources
★ interstellar medium as targets
★ both fixed by cosmic star formation rate
★ normalize to Milky Way CR/SN efficiency

Hopkins & Beacom 2006
Cosmic-Ray Sources
Across the Star-Forming Universe
Lichti, Bignami, & Paul 1978; Pavlidou & BDF 2002

Modeling the cosmic history of cosmic-ray interactions
★ supernovae as cosmic-ray sources
★ interstellar medium as targets
★ both fixed by cosmic star formation rate
★ normalize to Milky Way CR/SN efficiency

Results
Pavlidou & BDF

- star-forming galaxies: a feature!
 peak ~0.5 GeV
 offset from MW peak: distinguishable
Cosmic-Ray Sources
Across the Star-Forming Universe
Lichti, Bignami, & Paul 1978; Pavlidou & BDF 2002

Modeling the cosmic history of cosmic-ray interactions
★ supernovae as cosmic-ray sources
★ interstellar medium as targets
★ both fixed by cosmic star formation rate
★ normalize to Milky Way CR/SN efficiency

Results Pavlidou & BDF

- star-forming galaxies: a feature!
 peak ~ 0.5 GeV
 offset from MW peak: distinguishable
- near peak, $\sim 30\%$ of EGRET background (AGN)
Cosmic-Ray Sources
Across the Star-Forming Universe
Lichti, Bignami, & Paul 1978; Pavlidou & BDF 2002

Modeling the cosmic history of cosmic-ray interactions

- supernovae as cosmic-ray sources
- interstellar medium as targets
- both fixed by cosmic star formation rate
- normalize to Milky Way CR/SN efficiency

Results Pavlidou & BDF

- star-forming galaxies: a feature!
 - peak ~0.5 GeV
 - offset from MW peak: distinguishable
- near peak, ~30% of EGRET background (AGN)
- GLAST: more AGN resolved
 - galaxy peak emerges
Cosmic-Ray Sources
Across the Star-Forming Universe
Lichti, Bignami, & Paul 1978; Pavlidou & BDF 2002

Modeling the cosmic history of cosmic-ray interactions
★ supernovae as cosmic-ray sources
★ interstellar medium as targets
★ both fixed by cosmic star formation rate
★ normalize to Milky Way CR/SN efficiency

Results Pavlidou & BDF
› star-forming galaxies: a feature!
 peak ~0.5 GeV
 offset from MW peak: distinguishable
› near peak, ~30% of EGRET background (AGN)
› GLAST: more AGN resolved
 galaxy peak emerges
Cosmic-Ray Sources
Across the Star-Forming Universe
Lichti, Bignami, & Paul 1978; Pavlidou & BDF 2002

Modeling the cosmic history of cosmic-ray interactions
★ supernovae as cosmic-ray sources
★ interstellar medium as targets
★ both fixed by cosmic star formation rate
★ normalize to Milky Way CR/SN efficiency

Results Pavlidou & BDF

- star-forming galaxies: a feature!
 peak ~0.5 GeV
 offset from MW peak: distinguishable
- near peak, ~30% of EGRET background (AGN)
- GLAST: more AGN resolved
galaxy peak emerges
Gamma Signal from Starbursts

Individual starbursts: Torres, Reimer, Domingo-Santamaria, & Diegel 2004
- farther than Local Group but very high star-formation rates
- 13 sources likely observable by GLAST

Cosmic starbursts: Thomson, Quataert, & Waxman 2007
- dominate star formation at z>1
- Contribute ~50% of star-forming EGRB
- key assumption: starbursts gammas are cosmic-ray “calorimeters”: collisional pion production dominates energy losses
The Payoff:
Impact on Cosmological Physics

With observed signal from star-forming, cosmic-ray accelerating galaxies:
The Payoff: Impact on Cosmological Physics

With observed signal from star-forming, cosmic-ray accelerating galaxies:

★ measure of *cosmic star-formation rate*

but other direct probes available Lien talk
which allows gamma-rays to...

Prodanovic, Pavlidou, & BDF
The Payoff: Impact on Cosmological Physics

With observed signal from star-forming, cosmic-ray accelerating galaxies:

★ measure of cosmic star-formation rate

but other direct probes available Lien talk

which allows gamma-rays to...

★ probe supernova nonthermal energy injection into

Prodanovic, Pavlidou, & BDF
The Payoff: Impact on Cosmological Physics

With observed signal from star-forming, cosmic-ray accelerating galaxies:

★ measure of *cosmic star-formation rate*

but other direct probes available: Lien talk which allows gamma-rays to...

★ probe *supernova nonthermal energy injection* into

cosmic-ray energy deposition: collisions vs escape nonthermal pressure in intracluster medium
The Payoff: Impact on Cosmological Physics

With observed signal from star-forming, cosmic-ray accelerating galaxies:

★ measure of *cosmic star-formation rate*

 but other direct probes available Lien talk
 which allows gamma-rays to...

★ probe *supernova nonthermal energy injection* into

 cosmic-ray energy deposition: collisions vs escape
 nonthermal pressure in intracluster medium

★ Star-forming galaxy signals are *foreground to exotica*

 cosmological cosmic rays Keshet talk
 dark matter annihilation
Fermi/GLAST Impact

★ Extragalactic diffuse background
 sensitivity, angular resolution: better foreground separation
 intensity, spectrum probes normal galaxies

★ AGN
 resolved foreground lowers AGB background contribution, galaxies stand out

★ Local Galaxies
 Multiple Local Group galaxy detections
 tests cosmic-ray dependence on local environment (star formation) and
 universality of cosmic-ray confinement

★ Milky Way
 better diffuse/point source separation
 identification of pion bump?
THE COSMOLOGICAL PHYSICS OF STAR-FORMING GALAXIES AND THE GAMMA-RAY BACKGROUND

-Conclusions-

★ star formation guaranteed gamma rays
★ Fermi/GLAST “near field”:
 Milky Way spectrum: feature! calibrates extragalactic signal
 will detect Local Group galaxies: tests calibration (cosmic rays)
★ star-forming galaxies imprint feature in diffuse gamma sky
★ impact on cosmological physics
★ star-formation gamma rays & the primordial Li problem
THE COSMOLOGICAL PHYSICS OF
STAR-FORMING GALAXIES
AND THE GAMMA-RAY BACKGROUND

-Conclusions-

★ star formation ➔ guaranteed gamma rays

★ Fermi/GLAST “near field”:

Milky Way spectrum: feature! calibrates extragalactic signal
will detect Local Group galaxies: tests calibration (cosmic rays)

★ star-forming galaxies imprint feature in diffuse gamma sky

★ impact on cosmological physics

★ star-formation gamma rays & the primordial Li problem
Hadronic gamma production inevitably means *lithium synthesis*

Observables

- **gammas**: measure mean CR fluence across universe
- **lithium abundance**: measures local CR fluence

\[
\frac{\text{Li}}{\gamma} \sim \frac{\int \Phi_{\text{CR}}(\text{local}) \, dt}{\int \Phi_{\text{CR}}(\gamma\text{path}) \, dt}
\]

Complementary:

use one to probe the other
Paleolithography: Lithium Probes of Cosmic-Ray History
Prodanovic & BDF

Hadronic gamma production \(pp \rightarrow \pi^0 \rightarrow \gamma\gamma \)
inevitably means \textit{lithium synthesis} \(\alpha\alpha \rightarrow ^{6}\text{Li} + \cdots \)

\textbf{Observables}

\begin{itemize}
 \item \textbf{gammas:} measure mean CR fluence across universe
 \item \textbf{lithium abundance:} measures local CR fluence
\end{itemize}

\[
\frac{\text{Li}}{\gamma} \sim \frac{\int \Phi_{\text{CR (local)}} dt}{\int \Phi_{\text{CR (\gamma path)}} dt}
\]

Complementary:

use one to probe the other
Primordial Nucleosynthesis: The Lithium Problem

Cyburt, BDF, Olive 2003, 2008
Primordial Nucleosynthesis: The Lithium Problem
Cyburt, BDF, Olive 2003, 2008

Predict:

BBN theory: abundances vs baryon density

WMAP baryons → BBN+CMB abundances (blue)

Compare with Observations (yellow)
Primordial Nucleosynthesis: The Lithium Problem
Cyburt, BDF, Olive 2003, 2008

Predict:
BBN theory: abundances vs baryon density
WMAP baryons \rightarrow BBN+CMB abundances (blue)

Compare with Observations (yellow)

Results:
- D agreement excellent: woo hoo!
Primordial Nucleosynthesis:
The Lithium Problem
Cyburt, BDF, Olive 2003, 2008

Predict:
BBN theory: abundances vs baryon density
WMAP baryons \rightarrow BBN+CMB abundances (blue)

Compare with Observations (yellow)

Results:
- D agreement excellent: woo hoo!
- 7Li discordant: factor 4-5, 5sigma
 systematic errors in obs? theory? new physics?
Cosmic rays pollute primordial Li

\[7\text{Li}_{\text{observed}} = 7\text{Li}_{\text{CR}} + 7\text{Li}_{\text{BBN}} \]

But \(6\text{LiBeB}_{\text{GCR}} \rightarrow 6,7\text{Li}_{\text{GCR}} \)

Infer true \(7\text{Li}_{\text{BBN}} ! \)

How to calibrate for galactic, pre-Galactic Lithium?

use gamma/Li dosimetry!

diffuse pionic background

galactic, pre-galactic(?) Li production

Sharpens Li observations! But…
- makes WMAP Li problem worse!