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UEEEEN  of early universe cosmology.
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s o Solves flatness problem
Conclusions @ Solves size/entropy problem

o Provides a causal mechanism of generating primordial
cosmological perturbations (Chibisov & Mukhanov,
1981).
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Inflation SpeCTrum.

Conclusions

@ — baryon acoustic oscillations in matter power
spectrum.

o Inflation is the first scenario based on causal physics
which yields such a spectrum.

@ But it is not the only one.
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solve the “horizon problem” of Standard Big Bang
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Challen for a 0 . . .

inflaion o Scales of cosmological interest today originate inside

Theoraical the Hubble radius at early times in order for a causal
nallenges for 0 o . .

inflaion generation mechanism of fluctuations to be possible.

conelsons o Squeezing of fluctuations on super-Hubble scales in

order to obtain the acoustic oscillations in the CMB
angular power spectrum.

@ Mechanism for producing a scale-invariant spectrum of
curvature fluctuations on super-Hubble scales.
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Quantum Theory of Linearized Fluctuations

Iritor Step 1: Metric including fluctuations
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e ds® = a(t)®[(1+2d(x,1))dn® — (1 —20(x, t))dx?]
erturbations
Observational QO = (Po(t) + 5(10()(7 t)
Challenges for
inflation’ Note: ¢ and dy related by Einstein constraint equations
PSR Step 2: Expand the action for matter and gravity to second
niiaton order about the cosmological background:
Conclusions
2) 1 4 "2 i 2o
s — §/dx((v)—v,,-v’—|—7v)
z
v = 3(5(,0 4 Eq))
/
z = a0
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o oscillations on sub-Hubble scales
e o squeezing on super-Hubble scales vk ~ z

Conclusions

Quantum vacuum initial conditions:

Vi(ni) = (V2k)™

Connection with curvature perturbation in comoving gauge:
¢=zv (1)
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Challenges for o hji(x, t) transverse and traceless
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S o Two polarization states

Chal\‘enges for

Inflation o

Conclusions a
hj(X,t) = ha(X, t)e]

a=1

o At linear level each polarization mode evolves
independently.
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Canonical variable for gravitational waves:

Perturbations

u(x,t) = a(t)h(x. 1)

Inflation

Theoreical Equation of motion for gravitational waves:

Challenges for

Inflation
17

u;('+(k2—%)uk = 0.

Conclusions

Squeezing on super-Hubble scales, oscillations on
sub-Hubble scales.
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Perturbations o If EoS of matter is time independent, then z « a and

Observational uoxVv.
Challenges for

Inflation o Inthiscaser ~ 1.

Theoretical

Challenges for o During a phase transition EoS changes and u evolves
e differently than v (z evolves differently than a).

@ — Suppression of r.
o Example 1: Inflationary reheating transition.

o Example 2: nonsingular bounce phase in a bouncing
cosmology.

Conclusions
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e Pe(k) = KGR ~ K2
Challenges for

Inflation

Leaenel @ v ~ z ~ aon super-Hubble scales
hallenges for
o At late times on super-Hubble scales

Inflation

Conclusions

Pe(k. t) = Pe(k, ti(k)) () ~ KPa(ti(k) =2
o Hubble radius crossing ty(k): ak—!' = H~!
0 = Pk t) ~ (£)3(&(ty(k)))?

nyﬂ
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o Gravitational waves obey same EoM as cosmological
perturbations.

Perturbations

Observational
Challenges for

Inflation o Scale-invariant spectrum of gravitational waves
Theoretical emerges.
Challenges for >
Inflation H
0 Pu(k,t) ~ (==
Conclusions h( ? ) (mpl)

@ H decreasing during inflation — red tilt of gravitational
waves.

o Value of r set by the ratio of a and z during inflation.
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Origin of Scale-Invariant Spectrum

infation o The initial vacuum spectrum is blue:

Brandenberger

Introduction Pc(k) = k3’<(k)|2 ~ k2
Perturbations .
S o The curvature fluctuations grow on super-Hubble
servational . .
Challenges for scales in the contracting phase:
nflation
Theoretical
2 —1
(o] r for =
Irw'zlzlt‘ii:wges . Vk(77) C11 - G2 ’
Gonclusions o For modes which exit the Hubble radius in the matter

phase the resulting spectrum is scale-invariant:

Pc(k,n) ~ K3|vi(n)Pa2(n)

~ () ()2 g2

~ const,
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Introduction u satisfies the same equation of motion as v during the
Perturbations Contracting phase.

Observationa
Grallnges ot z = aduring the contracting phase.
— r ~ 1 at the end of the contracting phase.

Inflation

Scalar modes can be amplified during the non-singular
Conclusions transition phase (Y. Cai, E. McDonough, F. Duplessis
and R.B. arXiv:1305.5259)

r < 1is possible.
Note: Large r is not a special signature of inflation!

© ©

Theoretical
Challenges for
Inflation
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Signature in the Bispectrum: Results

Iritor If we project the resulting shape function .4 onto some

Bt popular shape masks we get
Introduction
Perturbations |l’5’|loca1 — _E ,
Observational 8
Challenges for
et for the local shape (ki <« ko = k3). This is negative and of
Theoretical
Clwwilﬁ‘eitg(::s for Ordel’ 0(1 )
infiation For the equilateral form (ky = ko = k3) the result is
Conclusions
’B’equll _ _255
64 ’

For the folded form (ki = 2k, = 2k3) one obtains the value

| B I folded _ 9
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i luEien Scenario

Perturbations

@ Horizon problem: absent.
Observational
Challenges for o Flatness problem: absent.

Inflation

Theorstical o Size and entropy problems: not present if we assume

Challenges for

Inflation that the universe begins cold and large.
Fonesens o Anisotropy problem (BKL instability): key challenge.

Note: Realization in String Theory: S-brane Bounce (R.B.,
C. Kounnas, H. Partouche, S. Patil and N. Toumbas,
arXiv:1312.2524).
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String Gas cosmology as a Realization of an
Emergent Universe

Inflation
CEEl) Idea: make use of the new symmetries and new degrees of
roduetion freedom which string theory provides to construct a new
S theory of the very early universe.
e Assumption: Matter is a gas of fundamental strings
el Assumption: Space is compact, e.g. a torus.
Theoretical Key pOintS:

Challenges for
Inflation

@ New degrees of freedom: string oscillatory modes

o Leads to a maximal temperature for a gas of strings,
the Hagedorn temperature

@ New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
equivalent to physics at small R

Conclusions
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T-Duality
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Introduction T-Duallty

Perturbations

R @ Momentum modes: E, = n/R
et Winding modes: E,, = mR
Duality: R —1/R (n,m) — (m, n)
Mass spectrum of string states unchanged
Symmetry of vertex operators

Symmetry at non-perturbative level — existence of
D-branes

Theoretical
Challenges for
Inflation

Conclusions
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Structure formation in string gas cosmology
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ational

Inflation

Conclusions

N.B. Perturbations originate as thermal string gas
fluctuations.




Method
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Introduction

Perturbations

Observational o Calculate matter correlation functions in the Hagedorn
R phase (neglecting the metric fluctuations)

Theoretical o For fixed k, convert the matter fluctuations to metric
Challenges for

Inflation fluctuations at Hubble radius crossing t = fj(k)

Sense o Evolve the metric fluctuations for t > t;(k) using the
usual theory of cosmological perturbations
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Extracting the Metric Fluctuations
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Ansatz for the metric including cosmological perturbations
and gravitational waves:

Introduction
Perturbations

Observational
Challenges for

B o = 2()((1+20)d? — [(1-20)5; + hyldxiale)
Challenges for

iaton Inserting into the perturbed Einstein equations yields

Conclusions

([O(K)[F) = 1672G2k~*(6T (k)5 T % (K))

(Ih(K)[?) = 1672 GPKk=*(5T' (K)o T';(K)) .
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Key ingredient: For thermal fluctuations:

Perturbations

8Fsle‘>rvanonfa\’ , T2
In;lztiilrlges . <5p > — ﬁcv '
Theoretical
Sl Key ingredient: For string thermodynamics in a compact
Conclusions Space
2 /3
Cy ~ 2R—/€s.
T(1=T/Th)
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Theoretical _ 2 | —4 2
ngﬁe?:gC:s for — 8G k < (5p) >R
Inflation T 1
Conclusions = 8G2 —3 e

55 1- T/ 7-H

Key features:

o scale-invariant like for inflation
o slight red tilt like for inflation
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Observational T
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Theoretical ES
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Conclusions
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Key features:

o scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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Perturbations o Static Hagedorn phase (including static dilaton) — new
Observational phySiCS required.

Challenges for

Inflation o Cy(R) ~ R? obtained from a thermal gas of strings
e Tt provided there are winding modes which dominate.
e o Cosmological fluctuations in the IR are described by
Einstein gravity.

Conclusions

Note: Specific higher derivative toy model: T. Biswas, R.B.,
A. Mazumdar and W. Siegel, 2006
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Comments on the Emergent Scenario
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Introduction

Perturbations

S o Horizon problem: absent if the loitering phase lasts
Challenges for sufficiently long.

Inflation

Theoretical o Size and entropy problems: absent since there is no

Challenges for

Inflation initial singularity.
conclisions o Flatness: not addressed.
o Key challenge: Dynamics of the emergent phase?
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TR o Inflationary cosmology (with matter obeying the energy

R conditions) yields a red tilt of the tensor spectrum.
flati . - q o o
:'“‘T_ | o Measuring a blue tilt would falsify inflation.
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Al o Measuring a red tilt would mean that inflation passes a
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Introduction

Perturbations o Inflationary cosmology (with matter obeying the energy
opservaional conditions) yields a red tilt of the tensor spectrum.
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Inflation

S o Measuring a blue tilt would falsify inflation.
neoretica
Challenges for o Measuring a red tilt would mean that inflation passes a

Inflation

i further consistency check.
o Inflationary consistency relation: n; = —r/8
o String gas consistency relation: n; ~ +(1 — ng).
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If the equation of state of the background cosmology
does not change in time then tensor and scalar modes
Oheorvational follow the same equation — we should expect a large
Challenges for value of r.

Inflation

Introduction

Perturbations

Theorstical o Matter bounce cosmology generically predicts large r.
Challenges for ) . 0 o
Inflation o String gas cosmology predicts a value of r which is
Conclusions Obsel’vable.
o Detecting a large value of r is not a smoking gun signal
for inflation.

o Detecting large r AND a red tilt n; obeying the single
inflaton consistency relation would be.
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ition G. Holder, arXiv:1003.0905).

Chaonges fo o Network of cosmic strings produces a significant

. background of stochastic GW with a scale-invariant
spectrum (A. Albrecht, R.B. and N. Turok, 1987).

o — a stochastic background of GW discovered via
B-mode polarization may well be due to other sources
than primordial adiabatic fluctuations.

o Statistical analysis of position space maps crucial to
distinguish between some of the possible sources of
B-mode polarization.
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Observational @ Matter bounce produces a large amplitude bispectrum
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Inflation with a special shape.
Jlicoctical o String gas cosmology produces a Poisson suppressed

Challenges for

Inflation bispectrum.

S o A bispectrum with a local shape and sizeable amplitude
would rule out two alternatives to inflation.
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Trans-Planckian Window of Opportunity

the Hubble radius — causal generation mechanism is
possible.

o Success of inflation: At early times scales are inside

o Problem: If time period of inflation is more than 70H~",

then \p(t) < Iy at the beginning of inflation.
@ — new physics MUST enter into the calculation of the
fluctuations.
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| Perioa 1 | Hubble radius

@ If evolution in Period | is non-adiabatic, then
scale-invariance of the power spectrum might be lost [J.
Martin and RB, 2000]

@ — Planck scale physics testable with cosmological
observations!
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@ Quantum vacuum energy does not gravitate.
@ Why should the almost constant V(y) gravitate?
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Applicability of GR
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Introduction In all approaches to quantum gravity, the Einstein action

Perturbations is only the leading term in a low curvature expansion.
e o Correction terms may become dominant at much lower
aton energies than the Planck scale.
Theoretical
R o Correction terms will dominate the dynamics at high
Conclusions Curvatures'

o The energy scale of inflation models is typically

n~ 10'6GeV.
@ — 7 too close to my, to trust predictions made using

GR.
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S o The inflationary paradigm has been very successful. It
Observational made predictions which have been observationally

Challenges for

Inflation Conflrmed
Theoretical o Inflation is not proven.
Chal\‘enges for
iaton o Alternatives to inflation exist.
o Observational challenges: n; and f,.

@ Theoretical challenges: inflation needs a UV
embedding.

Conclusions

61/61



	Inflation and Some Alternatives
	Closer Look at Cosmological Perturbations
	Observational Challenges for Inflation
	Theoretical Challenges for Inflation
	Conclusions

