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Inflationary Constraints 
From Planck Planck collaboration



Canonical inflationary model 

‣ Single, minimally coupled scalar field


‣ Smallest number of extra degrees of freedom


‣ Simplest scenario with negative pressure and accelerated expansion


‣ Chaotic inflation - “large” Δφ


‣ Starts for generic (homogeneous) initial configuration


‣ Tolerant of initial inhomogeneity / inflation begins at high scales


‣ Correlated with observable tensor signal 


‣ Algebraically simple


‣ Potentials can contain only tree-level terms



One field is simple but is it natural?

‣ Field content of particle physics models are (usually) a choice


‣ e.g. construction of the Standard Model (families matched to observations) 


‣ Grand Unified Theories — choose number / representations


‣ Include a scalar field singlet as the “inflaton sector”


‣ Must be coupled to other fields (for reheating) 


‣ But weakly coupled or tuned (to protect V(φ) from loop corrections)


‣ Naturalness v. simplicity


‣ Many scenarios naturally contain many scalar fields


‣ Explore generic properties of multifield inflation 



Multifield Inflation: few field and many field

‣ N fields, with Hamiltonian constraint - 2N -1 degrees of freedom


‣ N fields in expanding, FRW universe - 2N degrees of freedom


‣ H2(t) is specified if velocities and field values known


‣ Entropy / isocurvature perturbation


‣ Single fluid - only one “clock”


‣ Density and metric perturbation well defined (up to gauge choice)


‣ Multiple fluids - perturb mixture at fixed density


‣ Can evolve into density perturbation


‣ Also, complex valued scalars…



Few Field Inflation

‣ Two fields are very different from one   RE and Maeda gr-qc/9711035


‣ But three fields are not that different from two


‣ And are four fields very different from three? 


‣ Examples


‣ Hybrid inflation (second field provides instability direction)


‣ Curvaton models


‣ Modular inflation (Kadota and Stewart) 


‣ Potentials with corners (Langlois et al arXiv:1306.5680)


‣ c.f. single field “step” (Adams, Cresswell and RE, astro-ph/0102236)



Few Field Initial Conditions

‣ Initial conditions for inflation


‣ Overlaps with trans-Planckian problem; bubble collisions; “just enough” 
inflation, large scale anomalies…


‣ Inflation is supposed to solve initial conditions problems


‣ But if inflation can only start from a special configuration…


‣ Multifield dynamics are intrinsically chaotic 

‣ Homogeneous limit - count degrees of freedom


‣ Trajectories diverge exponentially in phase space


‣ Gradients “focus” adjacent points in inhomogeneous solutions



Hybrid Inflation - Toy Model

‣ Blue perturbation spectrum for reasonable parameters


‣ Widely used toy model for 2-field initial conditions


‣ But excluded by data (for most parameter values)


‣ Inflationary valley along ψ=0 direction


‣ Inflation ends with instability in ψ direction


‣ Assume homogeneous, flat (k=0) universe


‣ 4 degrees of freedom; 3 at fixed energy


‣ Energy monotonically decreasing; trajectories labelled by 3 numbers

RE, Price and Rasero arXiv:1406.2869 
RE and Price arXiv:1304.4244 
RE and Maeda gr-qc/9711035



Initial Conditions  
White: Inflationary

RE & Price 1304:4244

See also Clesse, Ringeval and 
Rocher 0909.0402



Initial Conditions  
White - inflationary RE & Price 1304:4244



Adding Inhomogeneity 
(But not local gravity) RE, Price and Rasero 1406.2869



Many Field Inflation

‣ Assisted inflation (Liddle, Mazumdar and Schunck, astro-ph/9804177) 


‣ Many identical fields - equivalent to single field inflation


‣ Composite inflaton, couplings and VEVs reduced by Nx


‣ N-flation 


‣ Multiple stringy axions (Dimopoulos et al. hep-th/0507205)


‣ Special case of assisted inflation; avoids Lyth bound


‣ Mass spectrum: eigenvalues of NxN random matrix 


‣ RE and McAllister (hep-th/0512102)


‣ String Landscape



String Landscape and 
Multifield Potentials

‣ What about a general potential?


‣ String theory landscape


‣ Fluxes on cycles of Calabi-Yau


‣ Potential with many (100s) scalars


‣ Complicated (unknown) form


‣ Many cross couplings


‣ Many minima


‣ But does “large N” help?


‣ Random Matrix Theory

Aazami and Easther  hep-th/0512050



‣ Maxima, minima and saddles


‣ Field point trapped in minima, escape by tunnelling 


‣ Inflation from saddles and maxima (or “near” saddles)


‣ For successful inflation                    [GENERALIZED SLOW ROLL]


‣  With many “downhill” directions inflation will be difficult


‣ Characterize extrema via Hessian matrix


‣ Diagonalize Hessian: locally orthogonal co-ordinates


‣ Maxima: all eigenvalues negative, minima all positive, saddles: all others


‣ Intuitively, saddles should be more common than maxima / minima 
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Uncoupled Fields, Random Functions

‣ Uncoupled fields (mixed partial derivatives of V all vanish)


‣ Hessian Matrix: diagonal


‣ Assume: eigenvalues uncorrelated


‣ Assume: sign of each eigenvalue is random


‣ P(maxima) = P(minima) ~ 2-N for N fields


‣ If we have c > 2 extrema in each direction, we have cN extrema


‣ And a large number of maxima/minima



Coupled Fields, Random Functions

‣ Now assume cross-couplings with the same magnitude as the mass


‣ Hessian matrix naturally symmetric (since V,ab = V,ba)


‣ Eigenvalues real (as we expect for a real-valued potential) 


‣ Assume elements of Hessian matrix are independent and uncorrelated


‣ How are the N eigenvalues distributed? 


‣ Guesses


‣ Uniform 


‣ Normal


‣ Something else?
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Fraction of Positive 
Eigenvalues

‣ Eigenvalues “repel”


‣ Aazami and Easther


‣ Numerical fit; twiddle calculation


‣   


‣ Number of extrema


‣ c “# of extrema in one direction”


‣ N-dimensions, # of extrema ~ cN


‣ If cross-couplings not suppressed


‣ Almost no extrema minima/maxima

Exact result: Dean and Majumdar Phys. Rev. Lett. 97 160201



Consequences	

‣ Random landscape with cross-couplings…


‣ Almost no minima/maxima - just saddles


‣ Always find a downhill direction: different from string landscape


‣ Q: Is the Hessian for a landscape with multiple vacua drawn from GOE?


‣ Apparently not...  


‣ Second model: diagonal matrix + ε (mixing matrix)


‣ Separation of scales ensures existence of minima



Newer Work

‣ Marsh, McAllister and Wrase 1112.3034


‣ N=1 SUGRA, N>>1 scalars - very few minima (cf. Denef and Douglas)


‣ Tye, Xu and Zhang 0812.1944v3 - Inflationary dynamics & a random potential


‣ Chen, Shiu, Sumitomo and Tye  1112.3338 - Vacuum counting in Type IIa


‣ Dynamics of inflation in a “bounded” potential


‣ Frazer and Liddle  1101.1619, 1111.6646


‣ Battefeld, Battefeld and Schulz  1203.3941


‣ Marsh, McAllister, Pajer and Wrase 1307.3559


‣ Reconstruct trajectories via Dyson Brownian Motion



N-flation

‣ Multiple axions


‣ Cosine potential, but assume quadratic (i.e. small excursion)


‣ Diagonalize Y = XXT, where X in an MxN matrix


‣ Positive eigenvalues (and m2)


‣ Find observables for N-flation


‣ Without full stringy calculation


‣ Masses: Marcenko-Pastur distribution


‣ Key lesson: finding large-N limits


‣ Is many-field inflation simpler than few-field inflation??

Marcenko-Pastur



Multifield Perturbations

‣ What about perturbations?


‣ Perturbations can evolve outside horizon


‣ Perturbation equations of motion: computational complexity ~ N2


‣ MultiModeCode - Frazer, Peiris, Price, and Xu


‣ Generalises ModeCode (Easther and Peiris) Mukhanov-Sasaki solver


‣ Getting ready for release; scales to 100s of fields…
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Easther, Frazer, Peiris and Price: 1312.4035 
 + in preparation

Peiris and Frazer,  
next week



Numerics…

!

‣ Have to be careful with stability


‣ Tested for fields with cross-couplings, non-zero mixed derivatives in V


‣ Measure spectrum at N=55, normalized to Planck best fit. 
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Few Field Dynamics

‣ Consider two and three fields


‣ Have to choose masses and initial values


‣ Heavier fields evolve more quickly toward the origin


‣ When VEVs get small enough fields oscillate around origin


‣ Sharp change in the potential - isolated features in spectrum at low-N


‣ Three classes of initial condition


‣ Iso E0 - initial values set on a surface of fixed energy


‣ Iso N - initial values fixed a given number of e-folds before inflation ends 


‣ Slow roll - uniform distribution of VEVs, velocities from slow roll



Two and Three field models 
m2/m1=7,9 (red,gold) 1312.4035
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0.940

0.945
0.950

0.955

n s- 0.0012
- 0.0010

- 0.0008
- 0.0006

a

What Do We See?

‣ Closer to single field limit


‣ But with nontrivial spread


‣ Limits on predictability for N-field?


‣ This is effectively N-flation


‣ Marginalised over initial conditions


‣ With 100 fields and 55 e-folds


‣ ~1 field always close to end of slow roll


‣ Depends of overall duration of inflation
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Tensor Modes and 
Running

‣ Same N=100 case


‣ Tensor modes close to N=1 limit


‣ Running unobservable in Planck


‣ Significant spread in ns


‣ Relative to Planck precision


‣ Bias toward red spectrum

1312.4035
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Isocurvature Modes	

‣ Solved for the full perturbation


‣ Can compute isocurvature contribution at end of inflation


‣ Identifying inflationary trajectory


‣ Compute N-1 orthogonal perturbations (Gram-Schmidt) 


‣ Define power spectrum and riso
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riso with N=100  
Evaluated at end of inflation



Consistency Conditions and Multifield Inflation

‣ Work in progress — Price, Frazer and Peiris (see Cosmo talks) 


‣ Marginalize over couplings/masses λi and initial field values φi 


‣ Consider multiple distributions / priors


‣ Compute ration of r and nt  


‣ Single field, slow roll: r=-8nt


‣ Multifield result


‣ Depends on N (number of fields)


‣ Lowest moments of λi distribution (1, 2 and 4) 


‣ Marginalise over φi (uniform distribution)


‣ A job for the central limit theorem..
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N=15 [L] and 1000 [R] In progress…

For reference: 1/8 = 0.125
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Summary…

‣ Strong motivations for considering multifield models


‣ Phenomenology of multifield inflation complicated (and interesting)


‣ Complicated spectra and features in few-field limit


‣ Possibility of attractors in large-N limit 


‣ Overlap with random matrix theory / random functions


‣ Rich and exciting branch of mathematics


‣ Is the landscape of inflationary solutions simpler than we might imagine


‣ Looked at quadratic assisted inflation / N-flation


‣ Role of isocurvature modes unknown…


‣ Consistency condition…
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