Particle Cosmology University of Pennsylvania

Ward Identities in Cosmology Justin Khoury (UPenn)

Hinterbichler, Hui & JK, 1203.6351, 1304.5527 Berezhiani & JK, 1309.4461, 1406.2689 Berezhiani, JK & Wang, 1401.7991

Related work:

Creminelli, Norena & Simonovic, 1203.4595
Goldberger, Hui & Nicolis, 1303.1193
Assasi, Baumann & Green, 1204.4207
Collins, Holman & Vardanyan, 1405.0017
Dimastrogiovanni, Fasiello, Jeong & Kamionkowski, 1407.8204
Armendariz-Picon, Neelakanta & Penco, to appear

Single-field consistency relations

$$\lim_{\vec{q}\to 0} \frac{\langle \zeta_{\vec{q}} \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \rangle}{P_{\zeta}(q)} = -(n_s - 1) P_{\zeta}(k_1)$$

Maldacena (2002); Creminelli & Zaldarriaga (2004); Cheung, Fitzpatrick, Kaplan & Senatore (2007).

- Holds in all inflationary models, under the assumptions:
 - single "clock"
 - Bunch-Davies vacuum (necessary?)
 - background is attractor $\zeta \to {
 m const.}$
- Measuring (primordial) 3-point function in this limit
 - automatically rules out all standard single-field models
 - Planck: $f_{
 m NL}^{
 m local} = 2.7 \pm 5.8$
- Consequence of symmetry: Ward identity for dilation

$$\begin{aligned} \langle \zeta_{S}\zeta_{S} \rangle_{\zeta_{L}} &= \langle \zeta_{S}\zeta_{S} \rangle_{0} + \zeta_{L} \frac{\mathrm{d}}{\mathrm{d}\zeta_{L}} \langle \zeta_{S}\zeta_{S} \rangle \Big|_{0} \\ &= \langle \zeta_{S}\zeta_{S} \rangle_{0} + \zeta_{L} \frac{\mathrm{d}}{\mathrm{d}\ln|\vec{x}_{1} - \vec{x}_{2}|} \langle \zeta_{S}\zeta_{S} \rangle \Big|_{0} \end{aligned}$$

Multiply by ζ_L and take expectation value:

$$\langle \zeta_L \langle \zeta_S \zeta_S \rangle_{\zeta_L} \rangle = \langle \zeta_L \zeta_L \rangle \frac{\mathrm{d}}{\mathrm{d} \ln |\vec{x}_1 - \vec{x}_2|} \langle \zeta_S \zeta_S \rangle$$

$$\implies \lim_{\vec{q} \to 0} \frac{\langle \zeta_{\vec{q}} \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \rangle}{P_{\zeta}(q)} = -(n_s - 1) P_{\zeta}(k_1)$$

"Background wave" argument is intuitive and compelling, but...

- Semi-classical
- Technically challenging for other symmetries
- Dependence on initial state unclear

The upshot of field theoretic method:

- Non-perturbative
- Easily generalizes to other symmetries
- Dependence on initial state is explicit

Conformal Symmetries of Scalars

Creminelli, Norena & Simonovic, 1203.4595; Hinterbichler, Hui & Khoury, 1203.6351

Uniform-density gauge:

$$\phi = \phi(t);$$

$$h_{ij} = a^{2}(t)e^{2\zeta(t,\vec{x})}\delta_{ij}$$

Bardeen, Steinhardt & Turner (1982); Bond & Salopek (1990)

This completely fixes the gauge, as long as we restrict to diffs that fall off at infinity. \Longrightarrow Focus on diffs that do not fall off.

e.g. Spatial dilation:

$$\vec{x} \to e^{\lambda} \vec{x}$$
 $\zeta \to \zeta + \lambda$

leaves h_{ij} invariant.

More generally, $h_{ij}=a^2(t)e^{2\zeta(t,ec{x})}\delta_{ij}$ is preserved by

Conformal transf'n:
$$\delta_{ij} \to e^{2\Omega(x)} \delta_{ij}$$
 + Shift: $\zeta \to \zeta + \Omega$

Conformal transf'ns on \mathbb{R}^3 form the group SO(4,1):

- lacktriangle Rotations + Translations $\delta\zeta=0$
- Dilation

Special conformal $x^{\iota} \rightarrow x^{\iota} + 2x$ transformations (SCTs) $\delta \zeta = -2\vec{b} \cdot \vec{x}$

$$x^i \to (1+\lambda)x^i$$
$$\delta\zeta = \lambda$$

$$x^{i} \to x^{i} + 2\vec{x} \cdot \vec{b} x^{i} - b^{i} \vec{x}^{2}$$
$$\delta \zeta = -2\vec{b} \cdot \vec{x}$$

Unbroken
(linearly realized)

Spontaneously broken (non-linearly realized)

$$so(4,1) \rightarrow rotations + translations$$

 ζ is Goldstone boson (dilaton) for the broken symmetries Inf'n = spontaneously broken dS

Dilation

$$\delta\zeta = \lambda$$

Special conf.

$$\delta \zeta = -2\vec{b} \cdot \vec{x}$$

Ward identities for broken symmetries

Homogeneous Goldstone π is equivalent to change of the vacuum, i.e. to a broken symmetry transformation.

Soft pion thms:

$$\lim_{\vec{q}\to 0} \langle \pi(\vec{q})\mathcal{O}(\vec{k}_1,\ldots,\vec{k}_N) \rangle \sim \langle \delta\mathcal{O}(\vec{k}_1,\ldots,\vec{k}_N) \rangle$$

e.g. Strong interactions

Consistency relations as Ward identities Assasi, Baumann and Green, 1204.4207

Assasi, Baumann and Green, 1204.4207 Hinterbichler, Hui and Khoury, 1304.5527 Goldberger, Hui and Nicolis, 1303.1193

Dilation:

$$\lim_{\vec{q}\to 0} \frac{1}{P_{\zeta}(q)} \langle \zeta(\vec{q}) \mathcal{O}^{\zeta}(\vec{k}_1, \dots, \vec{k}_N) \rangle_c' = -\left(3(N-1) + \sum_{a=1}^N \vec{k}_a \cdot \frac{\partial}{\partial \vec{k}_a}\right) \langle \mathcal{O}^{\zeta}(\vec{k}_1, \dots, \vec{k}_N) \rangle_c'$$

Special conformal:

$$\lim_{\vec{q}\to 0} \frac{\partial}{\partial q^i} \left(\frac{1}{P_{\zeta}(q)} \langle \zeta(\vec{q}) \mathcal{O}^{\zeta}(\vec{k}_1, \dots, \vec{k}_N) \rangle_c' \right) = -\frac{1}{2} \sum_{a=1}^N \left(6 \frac{\partial}{\partial k_a^i} - k_a^i \frac{\partial^2}{\partial k_a^j \partial k_a^j} + 2k_a^j \frac{\partial^2}{\partial k_a^j \partial k_a^i} \right) \langle \mathcal{O}^{\zeta}(\vec{k}_1, \dots, \vec{k}_N) \rangle_c'$$

Creminelli, Norena & Simonovic, 1203.4595

Single-field inflation constrained by infinite number of symmetries, corresponding to an infinite number of consistency relations:

$$\lim_{\vec{q}\to 0} \frac{\partial^n}{\partial q^n} \left(\frac{\langle \zeta_{\vec{q}} \mathcal{O}_{\vec{k}_1,...,\vec{k}_N} \rangle}{P_{\zeta}(q)} + \frac{\langle \gamma_{\vec{q}} \mathcal{O}_{\vec{k}_1,...,\vec{k}_N} \rangle}{P_{\gamma}(q)} \right) \sim \frac{\partial^n}{\partial k^n} \langle \mathcal{O}_{\vec{k}_1,...,\vec{k}_N} \rangle$$

- ullet q^0 and q behavior completely fixed (KNOWN)
- lacktriangledown 3 identities for n=0 ; 7 identities for n=1
- ullet Exactly 6 identities for all $n \geq 2$
- These are physical statements (i.e., can be violated)
- Hold on any spatially-flat FRW background (no slow-roll)
- Complete checklist for testing single-field mechanisms

6 diffs at $\mathcal{O}(x^2)$

Master Consistency Relation

Berezhiani and Khoury, 1309.4461 (See also: Pimentel, 1309.1793)

Since symmetries of interest are subset spatial diffeomorphism, consistency relations must be consequence of gauge symmetry (Slavnov-Taylor identity).

$$Z[J,\eta] = \int \mathcal{D}A_{\mu}\mathcal{D}\psi e^{iS_{\text{QED}} - \frac{i}{2\xi} \int (\partial^{\mu}A_{\mu})^{2} + i \int (J^{\mu}A_{\mu} + \eta\psi)}$$

Field redefinition:
$$A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \Lambda \; ; \qquad \psi \rightarrow \psi - i \Lambda \psi$$

$$\psi \to \psi - i\Lambda \psi$$

 $\delta Z = 0$

Z must be invariant:
$$\left[\frac{i\Box}{\xi}\partial^{\mu}\frac{\delta}{\delta J^{\mu}}-\partial^{\mu}J_{\mu}+\eta\frac{\delta}{\delta\eta}\right]Z[J,\eta]=0$$

Legendre transform ($J^{\mu} = -\frac{\delta \Gamma}{\delta A_{\mu}}$ etc.) :

$$-\frac{\Box}{\xi}\partial^{\mu}A_{\mu} + \partial_{\mu}\frac{\delta\Gamma}{\delta A_{\mu}} + i\psi\frac{\delta\Gamma}{\delta\psi} = 0$$

Can differentiate a number of times, e.g. $\Gamma_{\mu}^{Aar{\psi}\psi}=rac{\delta^{3}\Gamma}{\delta A\mu\delta^{2}\eta}$,

$$q^{\mu}\Gamma_{\mu}^{A\bar{\psi}\psi}(q,p,-p-q) = \Gamma^{\psi}(p+q) - \Gamma^{\psi}(p)$$

(Ward-Takahashi)

$$q^{\mu}\Gamma_{\mu}^{A\bar{\psi}\psi}(q,p,-p-q) = \Gamma^{\psi}(p+q) - \Gamma^{\psi}(p)$$

General solution is power series:

$$\Gamma_{\mu}^{A\bar{\psi}\psi}(q,p,-p-q) = \sum_{n=0}^{\infty} q^{\alpha_1} \dots q^{\alpha_n} \frac{\partial^n \Gamma^{\psi}(p)}{\partial p^{\mu} \partial p^{\alpha_1} \dots \partial p^{\alpha_n}} + C_{\mu} \qquad \begin{array}{c} \text{physical piece} \\ q^{\mu} C_{\mu} = 0 \end{array}$$

If C_{μ} is analytic in q_{μ} (locality), then it drops out at $\mathcal{O}(q^0)$:

$$\Gamma_{\mu}^{Aar{\psi}\psi}(0,p,-p)=rac{\partial\Gamma_{\psi}(p)}{\partial p^{\mu}}$$
 (QED analogue of Maldacena)

It can contribute at
$$\mathcal{O}(q^1)$$
 , e.g. $C^\mu = q_\nu[\gamma^
u,\gamma^\mu]$:

$$F_{\mu\nu}\bar{\psi}\gamma^{\mu}\gamma^{\nu}\psi$$

. . C_{μ} encodes physical info about non-minimal couplings

Cosmological Slavnov-Taylor Identity

Berezhiani & Khoury, 1309.4461 Collins, Holman & Vardanyan, 1405.0017

Following similar steps,

$$2\partial_j \left(\frac{1}{6} \delta_{ij} \frac{\delta \Gamma}{\delta \zeta} + \frac{\delta \Gamma}{\delta \gamma_{ij}} \right) = \partial_i \zeta \frac{\delta \Gamma}{\delta \zeta} + \text{G.F.}$$

Can vary this a number of times wrt the fields, e.g. vary twice wrt ζ ,

$$q^{j}\left(\frac{1}{3}\delta_{ij}\Gamma^{\zeta\zeta\zeta}+2\Gamma_{ij}^{\gamma\zeta\zeta}\right)=q_{i}\Gamma_{\zeta}(p)-p_{i}\bigg(\Gamma_{\zeta}(|\vec{q}+\vec{p}|)-\Gamma_{\zeta}(p)\bigg) \tag{Exact in q}$$

Analogue of W-T identity in E&M

General schematic solution:

$$\frac{1}{3}\delta_{ij}\Gamma^{\zeta\zeta\zeta} + 2\Gamma^{\gamma\zeta\zeta}_{ij} = \sum_{n=0}^{\infty} q^n \frac{\partial^n}{\partial p^n} P_{\zeta}(p) + A_{ij}(\vec{p}, \vec{q})$$

$$\text{physical piece } q^j A_{ij}(\vec{p}, \vec{q}) = 0$$

Whether or not consistency relation holds hinges on model-dependent piece A_{ij} . Most general form:

$$A_{ij}(\vec{p}, \vec{q}) = \epsilon_{ikm} \epsilon_{j\ell n} q^k q^\ell \left(a(\vec{p}, \vec{q}) \delta^{mn} + b(\vec{p}, \vec{q}) p^m p^n \right)$$

arbitrary scalar functions

Key assumption: Suppose a and b are analytic in q, such that

$$A_{ij}=\mathcal{O}(q^2)$$
 (Locality condition)

Then Maldacena's relation holds. Moreover, at each order in q can project out A_{ij} :

$$\lim_{\vec{q}\to 0} \frac{\partial^n}{\partial q^n} \left(\frac{\langle \zeta_{\vec{q}} \zeta_{\vec{p}} \zeta_{-\vec{q}-\vec{p}} \rangle}{P_{\zeta}(q)} + \frac{\langle \gamma_{\vec{q}} \zeta_{\vec{p}} \zeta_{-\vec{q}-\vec{p}} \rangle}{P_{\gamma}(q)} \right) \sim -\frac{\partial^n}{\partial p^n} P_{\zeta}(p)$$

General consistency relations

Physical Interpretation

$$\frac{1}{3}\delta_{ij}\Gamma^{\zeta\zeta\zeta} + 2\Gamma^{\gamma\zeta\zeta}_{ij} = \sum_{n=0}^{\infty} q^n \frac{\partial^n}{\partial p^n} P_{\zeta}(p) + A_{ij}(\vec{p}, \vec{q})$$

cubic vertices

$$\Longrightarrow A_{ij}=\mathcal{O}(q^2)$$
 is a locality requirement on the action.

- lacktriangle Naively this seems trivially satisfied, since GR + ϕ is a local theory
- lacktriangle But it's not: we have already integrated out N and N^\imath , hence the action $S = S[\zeta, \gamma_{ij}]$ is non-local.

$$N_i \supset -a^2 \frac{\dot{H}}{H^2} \frac{q_i}{q^2} \dot{\zeta}$$

For adiabatic modes, $\dot{\zeta} \propto q^2$ \Longrightarrow

$$\dot{\zeta} \propto q^2$$

Consistency Relations and the Initial State Berezhiani & JK, 1406.2689 Collins, Holman & Vardanyan, 1405.0017

- Possible to violate consistency relation with non-Bunch-Davies initial states, e.g. Agarwal, Holman, Tolley & Lin, 1212.1172.
- Where does that come into the background-wave argument?
- Goldberger et al's derivation seems to apply to any gauge inv state.

- Lam's paradox: Take some multi-field scenario, which generates significant $f_{\rm NI}^{\rm local}$.
 - For the consistency relation derivation, choose "initial time" well after inflation.
 - Subsequently, have single fluid, $\zeta \simeq \text{const.}$ etc.

Consistency relations should hold???

In the in-in formalism,

$$Z[J^+, J^-] = \int \mathcal{D}\Phi^+ \mathcal{D}\Phi^- \exp\left[i\left(S[\Phi^+, J^+] - S[\Phi^-, J^-]\right)\right] \rho(\Phi^+, \Phi^-; t_0)$$

density mtx

Focusing on pure states,
$$ho(\Phi^a;t_0)\sim \exp\left[i\Big(\mathcal{S}\left[\Phi^+;t_0
ight]-\mathcal{S}\left[\Phi^-;t_0
ight]\Big)
ight]$$

$$\longrightarrow \Gamma[\Phi^+, \Phi^-] = S[\Phi^+] + \mathcal{S}[\Phi^+; t_0] - S[\Phi^-] - \mathcal{S}[\Phi^-; t_0]$$

Slavnov-Taylor applies separately to S and ${\mathcal S}$, e.g.

$$\sum_{\pm} \left[2\partial_j \frac{\delta \mathcal{S}}{\delta h_{jk}^{\pm}} - \partial_k h_{ij}^{\pm} \frac{\delta \mathcal{S}}{\delta h_{ij}^{\pm}} + 2\partial_j \left(h_{ik}^{\pm} \frac{\delta \mathcal{S}}{\delta h_{jk}^{\pm}} \right) \right] = 0$$

Violations of consistency relation due to initial state trace back to non-localities in \mathcal{S} .

Consistency Relations in the Conformal Alternative Creminelli, Joyce, JK and Simonovic, 1212.3329

- Conformal mechanism: Quasi-static universe
 - Scale invariance from conformal invariance

$$so(4,2) \rightarrow so(4,1)$$

Soft pion thms (Ward identities) from the 5 broken symmetries

$$ec{q}
ightarrow 0$$
 $\sim P_{\pi}(ec{q})$ $imes$

$$\lim_{\vec{q}\to 0} \frac{1}{P_{\pi}(q)} \langle \pi(\vec{q})\mathcal{O}(\vec{k}_a) \rangle = -\left(1 + \frac{1}{N} \sum_{a} \vec{q} \cdot \frac{\partial}{\partial \vec{k}_a} + \frac{q^2}{6N} \sum_{a} \frac{\partial^2}{\partial k_a^2}\right) t \frac{\partial}{\partial t} \langle \mathcal{O}(\vec{k}_a) \rangle$$

Multiple Soft Limits

Another probe of higher-q dependence.

Senatore & Zaldarriaga, 1203.6884 Chen, Huang & Shiu, hep-th/0610235 Joyce, JK & Simonovic, to appear

e.g. Strong interactions:

$$\lim_{q_a,q_b\to 0} \langle \pi^a(q_a)\pi^b(q_b)\pi^{i_1}(k_1)\cdots\pi^{i_n}(k_n)\rangle = \frac{1}{2}\sum_j \frac{(q_a-q_b)\cdot k_j}{(q_a+q_b)\cdot k_j} \epsilon^{abc} \langle \pi^{i_1}(k_1)\cdots T_c\pi^{i_j}(k_j)\cdots\pi^{i_n}(k_n)\rangle$$

Double-soft result:

$$\lim_{\vec{q}_{1},\vec{q}_{2}\to 0} \frac{\langle \zeta_{\vec{q}_{1}}\zeta_{\vec{q}_{2}}\zeta_{\vec{k}_{1}}\cdots\zeta_{\vec{k}_{N}}\rangle'}{P_{\zeta}(q_{1})P_{\zeta}(q_{2})} = \frac{\langle \zeta_{\vec{q}_{1}}\zeta_{\vec{q}_{2}}\zeta_{-\vec{q}}\rangle'}{P_{\zeta}(q_{1})P_{\zeta}(q_{2})} \left(\delta_{\mathcal{D}} + \frac{1}{2}\vec{q}_{1}\cdot\delta_{\vec{K}}\right) \langle \zeta_{\vec{k}_{1}}\cdots\zeta_{\vec{k}_{N}}\rangle'$$

$$+ \left(\delta_{\mathcal{D}}^{2} + \frac{1}{2}\vec{q}_{1}\cdot\delta_{\vec{K}}\delta_{\mathcal{D}} + \frac{1}{4}q_{1}^{i}q_{2}^{j}\delta_{\mathcal{K}^{i}}\delta_{\mathcal{K}^{j}}\right) \langle \zeta_{\vec{k}_{1}}\cdots\zeta_{\vec{k}_{N}}\rangle'$$

$$+ \lim_{\vec{q}\to 0} \left[\frac{1}{2}\left(\vec{q}^{2}\nabla_{q}^{2} - 2q_{i}q_{j}\nabla_{q}^{i}\nabla_{q}^{j}\right) \langle \zeta_{\vec{q}}\zeta_{\vec{k}_{1}}\cdots\zeta_{\vec{k}_{N}}\rangle' + \frac{\langle \zeta_{\vec{q}_{1}}\zeta_{\vec{q}_{2}}\zeta_{-\vec{q}}\rangle'}{P_{\zeta}(q_{1})P_{\zeta}(q_{2})}q_{i}q_{j}\nabla_{q}^{i}\nabla_{q}^{j}\frac{\langle \zeta_{\vec{q}}\zeta_{\vec{k}_{1}}\cdots\zeta_{\vec{k}_{N}}\rangle'}{P_{\zeta}(q)}\right]$$

$$\delta_{\mathcal{D}} \equiv \text{dilation} \quad \delta_{\mathcal{K}} \equiv \text{SCT}$$

Large Scale Structure

Kehagias & Riotto, 1302.0130; Peloso & Pietroni, 1302.0223; Creminelli, Norena & Simonovic, 1309.3557 Horn, Hui & Xiao, 1406.0842

The inflationary consistency relations translate at late times to consistency relations for the LSS.

When short modes are deep inside Hubble, the relevant symmetry is

$$\eta o \eta \ , \qquad \vec{x} o \vec{x} + rac{1}{6} \eta^2 \vec{
abla} \Phi_{
m L}$$

homogeneous acc'n

 \Longrightarrow Equiv. Principle!

$$\lim_{\vec{q}\to 0} \langle \delta_{\vec{q}}(\eta) \, \delta_{\vec{k}_1}(\eta_1) \cdots \delta_{\vec{k}_n}(\eta_n) \rangle = -P_{\delta}(q,\eta) \sum_a \frac{D(\eta_a)}{D(\eta)} \frac{\vec{q} \cdot \vec{k}_a}{q^2} \langle \delta_{\vec{k}_1}(\eta_1) \cdots \delta_{\vec{k}_n}(\eta_n) \rangle$$

- ${\color{red} \bullet}$ Only assumes $~\delta_{\vec{q}} \ll 1$
- The short modes can be highly non-linear, including bias issues, messy astrophysics etc.

Conclusions

 ${\bf @}$ Single-field inflation constrained by <code>infinitely-many</code> relations (indep. of slow-roll, c_s , ϕ fundamental or not)

$$\lim_{\vec{q}\to 0} \frac{\partial^n}{\partial q^n} \left(\frac{\langle \zeta_{\vec{q}} \mathcal{O}_{\vec{k}_1,...,\vec{k}_N} \rangle}{P_{\zeta}(q)} + \frac{\langle \gamma_{\vec{q}} \mathcal{O}_{\vec{k}_1,...,\vec{k}_N} \rangle}{P_{\gamma}(q)} \right) \sim \frac{\partial^n}{\partial k^n} \langle \mathcal{O}_{\vec{k}_1,...,\vec{k}_N} \rangle.$$

- All follow from Slavnov-Taylor identity for spatial diffs
- Open questions:
 - Other symmetries?
 - Ward identities for open inflation?
 - Impact of modified initial state on LSS consistency relations?
 - Multiple soft identities with tensors?