How Quantum are the cosmological perturbations?

Eugene A. Lim

University of London

KICP Chicago Inflation Workshop 2014

Why do we care?

Primordial perturbations have a quantum origin : correlations are quantum.

Our observations are classical : we got a set of classical probability distribution functions pdf

$$
P_{c l}=\left\langle a_{l m} a_{l m}^{*}\right\rangle
$$

Is there a way to test for the quantum origin of perturbations?

Why do we care?

Example : 2 entangled qubits store 2 bits of info.
Separate observations on qubits can recover at most I bit of info: "lost quantum information".

Why do we care?

Example : 2 entangled qubits store 2 bits of info.
Separate observations on qubits can recover at most I bit of info: "lost quantum information".

David Tong's Nightmare : The CMB has quantum correlations telling us the Secret of M-Theory but humanity stupidly built Planck and made measurements which loses this information.

Why do we care?

All is not lost! If a system has quantum correlations, then it doesn't obey classical correlation statistics -we can check! (e.g. Bell's Inequality.)

General theorem (CHSH inequality) :
Quantum information cannot be represented by a local joint prob. distribution function.

Why do we care?

All is not lost! If a system has quantum correlations, then it doesn't obey classical correlation statistics -we can check! (e.g. Bell's Inequality.)

General theorem (CHSH inequality) : Quantum information cannot be represented by a local joint prob. distribution function.

Entanglement is not the only measure of quantumness!
To construct such a statistic, we need to know the nature of the quantum correlations.

Classical vs Quantum States

Classical States: described by joint probability distribution functions (pdf) of observables $P(x, p)$

Probability of finding particle in region M

$$
\text { Prob= } \int_{M} d x d p P(x, p)
$$

Classical vs Quantum States

Classical States: described by joint probability distribution functions (pdf) of observables $P(x, p)$

Probability of finding particle in region M

$$
\text { Prob }=\int_{M} d x d p P(x, p)
$$

Probability $=$ not sure where the particle is = "ambiguity" = entropy

Phase space for single particle state (x, p)

Boltzmann/Shannon Entropy

$$
H(P)=-\int d x P(x) \log P(x)
$$

Classical vs Quantum States

Quantum States: described by density matrices ρ

A state vector $\left|u_{i}\right\rangle$ describes a pure state.
$\rho=\sum_{i} p_{i}\left|u_{i}\right\rangle\left\langle u_{i}\right| \quad \sum_{i} p_{i}=1$ A mixture of pure states $\left|u_{i}\right\rangle$

Classical vs Quantum States

Quantum States: described by density matrices ρ

A state vector $\left|u_{i}\right\rangle$ describes a pure state.
$\rho=\sum_{i} p_{i}\left|u_{i}\right\rangle\left\langle u_{i}\right| \quad \sum_{i} p_{i}=1$ A mixture of pure states $\left|u_{i}\right\rangle$
Pure states $\rho=|u\rangle\langle u|$ can evolve into mixed states under non-unitary operations in Open systems.

Combined "Bipartite" $\rho_{S \mathcal{E}}$ Access only to $\mathrm{S}: \rho_{S}=\operatorname{Tr}_{\mathcal{E}} \rho_{S \mathcal{E}}$
"Ambiguity" = Von Neumann Entropy $S\left(\rho_{S}\right)=-\operatorname{Tr}\left(\rho_{S} \log \rho_{S}\right)$

Classical vs Quantum States

Quantum States: described by density matrices ρ

Given bipartite system, it is separable if

$$
\rho=\sum_{i} p_{i}\left|u_{i}\right\rangle_{S}\left|e_{i}\right\rangle_{E E}\left\langle\left. e_{i}\right|_{S}\left\langle u_{i}\right|\right.
$$

example $\quad \rho=\frac{1}{2}\left|0_{S}\right\rangle\left|0_{E}\right\rangle\left\langle 0_{S}\right|\left\langle 0_{E}\right|+\frac{1}{2}\left|1_{S}\right\rangle\left|1_{E}\right\rangle\left\langle 1_{S}\right|\left\langle 1_{E}\right|$
Pure states : separability = non-entanglement = classical pdf.

Mixed states : separability = non-entanglement \neq classical pdf (quantum discord)

Classical vs Quantum States

Equivalent"quasi-pdf" picture :Wigner distribution

$$
W(x, p)=\frac{1}{\pi} \int_{-\infty}^{\infty} e^{2 i p y}\left\langle x-\frac{y}{2}\right| \rho\left|x+\frac{y}{2}\right\rangle
$$

p

Prob density of x is then

$$
\langle x| \rho|x\rangle=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d p W(x, p)
$$

Phase space for single particle

$$
\text { state }(x, p)
$$

Classical vs Quantum States

Equivalent"quasi-pdf" picture :Wigner distribution

This is an integration over an infinite strip of p (uncertainty principle).

Phase space for single particle state (x, p)

Classical vs Quantum States

Equivalent "quasi-pdf" picture :Wigner distribution
$W(x, p)=\frac{1}{\pi} \int_{-\infty}^{\infty} e^{2 i p y}\left\langle x-\frac{y}{2}\right| \rho\left|x+\frac{y}{2}\right\rangle$
Prob density of x is then

$$
\langle x| \rho|x\rangle=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d p W(x, p)
$$

This is an integration over an infinite strip of p (uncertainty principle).

Phase space for single particle state (x, p) any infinite strip would do.

Decoherence in a nutshell

Consider pure state $|S\rangle=\alpha|0\rangle+\beta|1\rangle$

Coherence $=$ quantum phase of α and β preserved.

$$
\rho=|S\rangle\langle S|=|\alpha|^{2}|0\rangle\langle 0|+|\beta|^{2}|1\rangle\langle 1|+\alpha \beta^{*}|0\rangle\langle 1|+\alpha^{*} \beta|1\rangle\langle 0|
$$

$$
=\left(\begin{array}{ll}
|\alpha|^{2} & \alpha \beta^{*} \\
\alpha^{*} \beta & |\beta|^{2}
\end{array}\right)
$$

Decoherence in a nutshell

Consider pure state $|S\rangle=\alpha|0\rangle+\beta|1\rangle$

Coherence $=$ quantum phase of α and β preserved.

$$
\begin{aligned}
\rho=|S\rangle\langle S| & =|\alpha|^{2}|0\rangle\langle 0|+|\beta|^{2}|1\rangle\langle 1|+\alpha \beta^{*}|0\rangle\langle 1|+\alpha^{*} \beta|1\rangle\langle 0| \\
& =\left(\begin{array}{cc}
|\alpha|^{2} & \alpha \beta^{*} \\
\alpha^{*} \beta & |\beta|^{2}
\end{array}\right)
\end{aligned}
$$

Decoherence : couple S to environment E.
$|S\rangle \otimes|E\rangle=(\alpha|0\rangle+\beta|1\rangle)|E\rangle \xrightarrow{\text { couplings }} \alpha|0\rangle|E(0)\rangle+\beta|1\rangle|E(1)\rangle$
If we have only access to S, then

$$
\rho_{S}=\operatorname{Tr}_{E} \rho_{S E}=\left(\begin{array}{cc}
\rho_{00} & \rho_{01} \rightarrow 0 \\
\rho_{10} \rightarrow 0 & \rho_{11}
\end{array}\right) \rightarrow\left(\begin{array}{cc}
|\alpha|^{2} & 0 \\
0 & |\beta|^{2}
\end{array}\right)
$$

Final matrix is mixed and phase info is lost.

Decoherence basis is crucial

Secret assumption : decoherence occurred in $\{|0\rangle,|1\rangle\}$ basis.
If decoherence occurs at rotated basis

$$
\left\{\cos \theta|0\rangle+e^{i \phi} \sin \theta|1\rangle,-e^{-i \phi} \sin \theta|0\rangle-\cos \theta|1\rangle\right\}
$$

classical pdf obtained from decoherence do not recover all the quantum information.

Decoherence basis is crucial

Secret assumption : decoherence occurred in $\{|0\rangle,|1\rangle\}$ basis.
If decoherence occurs at rotated basis

$$
\left\{\cos \theta|0\rangle+e^{i \phi} \sin \theta|1\rangle,-e^{-i \phi} \sin \theta|0\rangle-\cos \theta|1\rangle\right\}
$$

classical pdf obtained from decoherence do not recover all the quantum information.

Quantum nature of cosmological perturbations depends on how they interact with environment and how we measure them.

What about inflation?

Starobinsky, Polarski (1998)

Single mode Hamiltonian for cosmological perturbations

$$
\begin{gathered}
\hat{H}_{k}=\frac{1}{2}\left(p_{k}^{2}+k^{2} y_{k}^{2}+\frac{2 a^{\prime}}{a^{\prime}} y_{k} p_{k}\right) \\
\delta \phi_{k} \equiv y_{k} p_{k}=\frac{\partial L\left(y_{k}, y_{k}^{\prime}\right)}{\partial y_{k}^{\prime}}=y_{k}^{\prime}-a^{\prime} / a y_{k}
\end{gathered}
$$

\hat{H}_{k} is a unitary evolution operator.
Schrodinger's equation of wave function $\psi(y, \eta)$

$$
i \hbar \frac{\partial \psi(y, \eta)}{\partial \eta}=\hat{H}_{k} \psi(y, \eta)
$$

with solution $\psi(y, \eta)=\left(\frac{2 \Omega_{R}(\eta)}{\pi}\right)^{1 / 4} \exp \left(-\left(\Omega_{R}+i \Omega_{I}\right) y^{2}\right)$
for inflation background $\Omega_{R} \rightarrow k e^{-2 r}, \Omega_{I} \rightarrow-k e^{-r}$

$$
r=\# \text { efolds }
$$

Cosmological "Squeezed states"

Construct density matrix

$$
\rho_{S}=|\psi\rangle\langle\psi|=\frac{2 \Omega_{R}}{\pi} \exp \left[-\left(\frac{\Omega_{R}}{2}\left(y-y^{\prime}\right)^{2}-\frac{\Omega_{R}}{2}\left(y+y^{\prime}\right)^{2}-i \Omega_{I}\left(y^{2}-y^{\prime 2}\right)\right]\right.
$$

As $\Omega_{R} / k=e^{-2 r} \ll 1 \Rightarrow$ off-diagonal terms get killed off So far unitary evolution : no decoherence so still pure state.

Cosmological"Squeezed states"

Construct density matrix
$\rho_{S}=|\psi\rangle\langle\psi|=\frac{2 \Omega_{R}}{\pi} \exp \left[-\left(\frac{\Omega_{R}}{2}\left(y-y^{\prime}\right)^{2}-\frac{\Omega_{R}}{2}\left(y+y^{\prime}\right)^{2}-i \Omega_{I}\left(y^{2}-y^{\prime 2}\right)\right]\right.$
As $\Omega_{R} / k=e^{-2 r} \ll 1 \Rightarrow$ off-diagonal terms get killed off So far unitary evolution : no decoherence so still pure state.

Cosmological"Squeezed states"

Construct density matrix

$$
\rho_{S}=|\psi\rangle\langle\psi|=\frac{2 \Omega_{R}}{\pi} \exp \left[-\left(\frac{\Omega_{R}}{2}\left(y-y^{\prime}\right)^{2}-\frac{\Omega_{R}}{2}\left(y+y^{\prime}\right)^{2}-i \Omega_{I}\left(y^{2}-y^{\prime 2}\right)\right]\right.
$$

As $\Omega_{R} / k=e^{-2 r} \ll 1 \Rightarrow$ off-diagonal terms get killed off So far unitary evolution : no decoherence so still pure state.

Wigner function is a gaussian with ellipsoid axes $\left(e^{-r}, e^{r}\right)$

$$
W(y, p)=\frac{1}{\pi} \exp \left[-\frac{1}{2} \mathbf{x} \sigma_{S}^{-1} \mathbf{x}^{T}\right]
$$

$$
\text { classical measurements }=\mathbf{x}=(x, p)
$$ gaussian pdf

Cosmological"Squeezed states"

Starobinsky, Kiefer and Polarski's decoherence ansatz (I998)
Couple to environment $\rho_{S E}$, we add a decoherence term

$$
\rho_{S}^{\prime}=\operatorname{Tr}_{E} \rho_{S E}=\rho_{S} \times \exp \left[-\frac{\zeta}{2}\left(y-y^{\prime}\right)^{2}\right] \quad \zeta \gg \Omega_{R}
$$

New mixed state is still a gaussian but with axes $\left(e^{r}, \zeta\right)$
Question I : is the decoherence basis parallel to $\left\{y_{k}\right\}$?
Question 2 : how to quantify "quantumness"?
We will model $\rho_{S E}$ and use quantum discord to answer both questions.

Quantum Discord

Classical Mutual Information

$$
J(A: B)=H(A)-H(A \mid B)
$$

A and B correlated, mutual info is how much we learn more about A when B is found out.

Classical pdf, Bayes Theorem $H(A \mid B)=H(A, B)-H(B)$
Get equivalent expression

$$
I(A: B)=H(A)+H(B)-H(A, B)
$$

Quantum Discord

Classical Mutual Information

$$
J(A: B)=H(A)-H(A \mid B)
$$

A and B correlated, mutual info is how much we learn more about A when B is found out.

Classical pdf, Bayes Theorem $H(A \mid B)=H(A, B)-H(B)$
Get equivalent expression

$$
I(A: B)=H(A)+H(B)-H(A, B)
$$

Quantum generalization: replace Shannon with Von Neumann $H(A) \rightarrow S(A)$

$$
\begin{aligned}
& I(A: B) \rightarrow \mathcal{I}(A: B)=S(A)+S(B)-S(A, B) \\
& J(A: B) \rightarrow \mathcal{J}(A: B)=S(A)-S(A \mid B)
\end{aligned}
$$

Quantum Discord

What is the quantum version of $S(A \mid B)$?
"Finding out $\mathrm{B} "=$ making measurement on B but quantum mechanically this will disturb A !

Quantum Discord

What is the quantum version of $S(A \mid B)$?
"Finding out B " = making measurement on B but quantum mechanically this will disturb A!
Ollivier and Zurek (2001) propose the following: I. Given some basis of measurements on $\mathrm{B} \quad\left\{\Pi_{k}^{B}\right\}$
2. Each Π_{k}^{B} measurement occurs with prob. P_{k} and

$$
\rho_{A B} \rightarrow \rho_{A \mid B=\Pi_{k}^{B}}=\frac{\rho_{A B} \Pi_{k}^{B}}{P_{k}}
$$

3. Define $S\left(A \mid B=\left\{\Pi_{k}^{B}\right\}\right)=\sum_{k} P_{k} S\left(\rho_{A \mid B=\Pi_{k}^{B}}\right)$
4. Quantum Discord is then

$$
\delta(A: B)_{\Pi_{k}^{B}}=\mathcal{I}(A: B)-\mathcal{J}(A: B)_{\Pi_{k}^{B}}>0
$$

Quantum Discord

Some facts on Discord :
I. Zero discord $\delta(A: B)_{\Pi^{B}}=0$ means decoherence occurred in "pointer basis" and no entanglement. Can define to be "Classical".
2. Mixed Separable state can have non-zero discord. No entanglement \neq no quantum correlations!
3. Basis-independent discord : minimize over all possible decoherence basis.
4. Recently shown separable 2 qubits computers with discord is exponentially faster than classical computers.

Datta, Shaji, Caves (2007)

How to model systemenvironment?

Start with Starobinsky-Polarski-Kiefer Gaussian ansatz
$\rho_{S}^{\prime} \rightarrow W(y, p)=\frac{1}{\pi} \exp \left[-\frac{1}{2} \mathbf{x} \sigma_{S}^{-1} \mathbf{x}^{T}\right], \sigma_{S}\left(\Omega_{R}, \Omega_{I}, \zeta\right)$
We want to find a joint density matrix $\rho_{S E}$ such that

$$
\rho_{S}=\operatorname{Tr}_{E}\left(\rho_{S E}\right)
$$

How to model systemenvironment?

Start with Starobinsky-Polarski-Kiefer Gaussian ansatz
$\rho_{S}^{\prime} \rightarrow W(y, p)=\frac{1}{\pi} \exp \left[-\frac{1}{2} \mathbf{x} \sigma_{S}^{-1} \mathbf{x}^{T}\right], \sigma_{S}\left(\Omega_{R}, \Omega_{I}, \zeta\right)$
We want to find a joint density matrix $\rho_{S E}$ such that

$$
\rho_{S}=\operatorname{Tr}_{E}\left(\rho_{S E}\right)
$$

Not unique and continuous states are HARD. A way forward is to assume that $\rho_{S E}$ is also Gaussian.

How to model systemenvironment?

A unique pure gaussian $\rho_{S E}$ can be constructed ("gaussian purification" of ρ_{S}).
$W\left(y_{1}, y_{2}, p_{1}, p_{2}\right)=\frac{1}{\pi} \exp \left[-\frac{1}{2} \mathbf{x} \sigma_{S E}^{-1} \mathbf{x}^{T}\right] \quad \mathbf{x}=\left(y_{1}, p_{1}, y_{2}, p_{2}\right)$
$\sigma_{S E}=\left(\begin{array}{cccc}\frac{1}{\lambda} & \frac{a}{\lambda} & \frac{\sqrt{\zeta}}{\lambda^{3 / 4} \sqrt[4]{\zeta+\lambda}} & 0 \\ \frac{a}{\lambda} & \frac{a^{2}}{\lambda}+\zeta+\lambda & \frac{a \sqrt{\zeta}}{\lambda^{3 / 4} \sqrt[4]{\zeta+\lambda}} & -\sqrt{\zeta} \sqrt[4]{\frac{\zeta+\lambda}{\lambda}} \\ \frac{\sqrt{\zeta}}{\lambda^{3 / 4}} & \frac{a \sqrt{\zeta}}{\lambda^{3 / 4} \sqrt[4]{\zeta+\lambda}} & \sqrt{\frac{\zeta+\lambda}{\lambda}} & 0 \\ 0 & -\sqrt{\zeta} \sqrt[4]{\frac{\zeta+\lambda}{\lambda}} & 0 & \sqrt{\frac{\zeta+\lambda}{\lambda}}\end{array}\right)$

$$
a=-\Omega_{I} / k, \lambda=\Omega_{R} / k, \xi=\zeta / k
$$

How to model systemenvironment?

A unique pure gaussian $\rho_{S E}$ can be constructed ("gaussian purification" of ρ_{S}).

Perturb around $\rho_{S E}$ to obtain general mixed states.
Given pure state bipartite $\rho_{S E}$ we can compute the discord (turns out to be basis independent)
$\delta(A: B)=\frac{1+\sqrt{1+\chi}}{2} \log \left(\frac{1+\sqrt{1+\chi}}{2}\right)-\frac{\sqrt{1+\chi}+1}{2} \log \left(\frac{\sqrt{1+\chi}-1}{2}\right), \chi=\frac{\zeta}{\Omega_{R}} \gg 1$
Zero when $\zeta=0$ so the non-decohered perturbations has classical statistics!

How to model systemenvironment?

This is actually equal to the Von Neumann entropy

$$
\delta(A: B)=S\left(\rho_{S}\right)
$$

(Kiefer, Starobinsky and Polarski 1999)

Reason : $\rho_{S E}$ is pure, and discord captures mixed state quantum correlations beyond entanglement entropy.

Still work in progress : mixed $\rho_{S E}$

Summary

I. Environment picks out the basis of which we measure quantum cosmological correlations.
2. Even if cosmological perturbations are highly squeezed, measurements in off-basis may retain "quantum" correlations.
3. Propose a gaussian construction of joint $\rho_{S E}$ perturbations-environment bipartite state
4. Propose quantum discord as robust measure of quantum correlations in the joint system.

