How Quantum are the cosmological perturbations?

Eugene A. Lim

University of London

KICP Chicago Inflation Workshop 2014

Primordial perturbations have a quantum origin : correlations are quantum.

Our observations are classical : we got a set of classical probability distribution functions pdf

$$P_{cl} = \langle a_{lm} a_{lm}^* \rangle$$

Is there a way to test for the quantum origin of perturbations?

Example : 2 entangled qubits store 2 bits of info.

Separate observations on qubits can recover at most I bit of info : "lost quantum information".

Example : 2 entangled qubits store 2 bits of info.

Separate observations on qubits can recover at most I bit of info : "lost quantum information".

David Tong's Nightmare : The CMB has quantum correlations telling us the Secret of M-Theory but humanity stupidly built Planck and made measurements which loses this information.

All is not lost! If a system has quantum correlations, then it doesn't obey classical correlation statistics -we can check! (e.g. Bell's Inequality.)

General theorem (CHSH inequality) :

Quantum information cannot be represented by a local joint prob. distribution function.

All is not lost! If a system has quantum correlations, then it doesn't obey classical correlation statistics -we can check! (e.g. Bell's Inequality.)

General theorem (CHSH inequality) :

Quantum information cannot be represented by a local joint prob. distribution function.

Entanglement is **not** the only measure of quantumness!

To construct such a statistic, we need to know the nature of the quantum correlations.

Classical States : described by *joint* probability distribution functions (pdf) of observables P(x, p)

Probability of finding particle in region $\,M\,$

Classical States : described by *joint* probability distribution functions (pdf) of observables P(x, p)

Probability of finding particle in region $\,M\,$

$$Prob = \int_M dx \ dp \ P(x, p)$$

Probability = not sure where the particle is = "ambiguity" = entropy

 $\rightarrow x$

P(x,p)

Phase space for single particle state (x,p)

Boltzmann/Shannon Entropy

$$H(P) = -\int dx \ P(x) \log P(x)$$

p

Quantum States : described by density matrices ρ

A state vector $|u_i\rangle$ describes a pure state.

$$ho = \sum_{i} p_{i} |u_{i}\rangle \langle u_{i}|$$
 $\sum_{i} p_{i} = 1$ A mixture of pure states $|u_{i}\rangle$

Quantum States : described by density matrices ρ

A state vector $|u_i\rangle$ describes a pure state.

 $ho = \sum_i p_i |u_i\rangle \langle u_i| \quad \sum_i p_i = 1 \;\; {\sf A} \; {\it mixture of pure states } |u_i
angle$

Pure states $\rho = |u\rangle\langle u|$ can evolve into mixed states under non-unitary operations in Open systems.

Combined "Bipartite" $\rho_{S\mathcal{E}}$ Access only to $S: \rho_S = \text{Tr}_{\mathcal{E}}\rho_{S\mathcal{E}}$

"Ambiguity" = Von Neumann Entropy $S(\rho_S) = -\text{Tr}(\rho_S \log \rho_S)$

Quantum States : described by density matrices ρ

Given bipartite system, it is separable if

$$\begin{split} \rho &= \sum_{i} p_{i} |u_{i}\rangle_{S} |e_{i}\rangle_{EE} \langle e_{i}|_{S} \langle u_{i}| \\ \text{example} \quad \rho &= \frac{1}{2} |0_{S}\rangle |0_{E}\rangle \langle 0_{S}| \langle 0_{E}| + \frac{1}{2} |1_{S}\rangle |1_{E}\rangle \langle 1_{S}| \langle 1_{E}| \end{split}$$

Pure states : separability = non-entanglement = classical pdf.

Mixed states : separability = non-entanglement \neq classical pdf (quantum discord)

Equivalent "quasi-pdf" picture : Wigner distribution

Equivalent "quasi-pdf" picture : Wigner distribution

Equivalent "quasi-pdf" picture : Wigner distribution

Decoherence in a nutshell Consider pure state $|S\rangle = \alpha|0\rangle + \beta|1\rangle$ **Coherence =** quantum phase of α and β preserved. $\rho = |S\rangle\langle S| = |\alpha|^2|0\rangle\langle 0| + |\beta|^2|1\rangle\langle 1| + \alpha\beta^*|0\rangle\langle 1| + \alpha^*\beta|1\rangle\langle 0|$ $= \begin{pmatrix} |\alpha|^2 & \alpha\beta^*\\ \alpha^*\beta & |\beta|^2 \end{pmatrix}$ **Decoherence in a nutshell** Consider pure state $|S\rangle = \alpha|0\rangle + \beta|1\rangle$ **Coherence =** quantum phase of α and β preserved. $\rho = |S\rangle\langle S| = |\alpha|^2|0\rangle\langle 0| + |\beta|^2|1\rangle\langle 1| + \alpha\beta^*|0\rangle\langle 1| + \alpha^*\beta|1\rangle\langle 0|$ $= \begin{pmatrix} |\alpha|^2 & \alpha\beta^* \\ \alpha^*\beta & |\beta|^2 \end{pmatrix}$

Decoherence : couple S to environment E.

 $|S\rangle \otimes |E\rangle = (\alpha|0\rangle + \beta|1\rangle)|E\rangle \xrightarrow{couplings} \alpha|0\rangle|E(0)\rangle + \beta|1\rangle|E(1)\rangle$

If we have only access to S, then

$$\rho_S = \text{Tr}_E \rho_{SE} = \begin{pmatrix} \rho_{00} & \rho_{01} \to 0 \\ \rho_{10} \to 0 & \rho_{11} \end{pmatrix} \to \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$$

Final matrix is *mixed* and phase info is lost.

Decoherence basis is crucial

Secret assumption : decoherence occurred in $\{|0\rangle, |1\rangle\}$ basis.

If decoherence occurs at rotated basis $\{\cos\theta|0\rangle + e^{i\phi}\sin\theta|1\rangle, -e^{-i\phi}\sin\theta|0\rangle - \cos\theta|1\rangle\}$

classical pdf obtained from decoherence do not recover all the quantum information.

Decoherence basis is crucial

Secret assumption : decoherence occurred in $\{|0\rangle, |1\rangle\}$ basis.

If decoherence occurs at rotated basis $\{\cos\theta|0\rangle + e^{i\phi}\sin\theta|1\rangle, -e^{-i\phi}\sin\theta|0\rangle - \cos\theta|1\rangle\}$

classical pdf obtained from decoherence do not recover all the quantum information.

Quantum nature of cosmological perturbations depends on how they interact with environment and how we measure them.

What about inflation? Starobinsky, Polarski (1998)

Single mode Hamiltonian for cosmological perturbations

$$\hat{H}_{k} = \frac{1}{2} \left(p_{k}^{2} + k^{2} y_{k}^{2} + \frac{2a'}{a'} y_{k} p_{k} \right)$$
$$\delta\phi_{k} \equiv y_{k} p_{k} = \frac{\partial L(y_{k}, y_{k}')}{\partial y_{k}'} = y_{k}' - a'/ay_{k}$$

 \hat{H}_k is a unitary evolution operator.

Schrodinger's equation of wave function $\psi(y,\eta)$

$$i\hbar \frac{\partial \psi(y,\eta)}{\partial \eta} = \hat{H}_k \psi(y,\eta).$$

with solution $\psi(y,\eta) = \left(\frac{2\Omega_R(\eta)}{\pi}\right)^{1/4} \exp(-(\Omega_R + i\Omega_I)y^2)$

for inflation background $\Omega_R \to ke^{-2r}$, $\Omega_I \to -ke^{-r}$

r = #efolds

Construct density matrix

$$\rho_S = |\psi\rangle\langle\psi| = \frac{2\Omega_R}{\pi} \exp\left[-(\frac{\Omega_R}{2}(y-y')^2 - \frac{\Omega_R}{2}(y+y')^2 - i\Omega_I(y^2-y'^2)\right]$$

As $\Omega_R/k = e^{-2r} \ll 1 \Rightarrow$ off-diagonal terms get killed off So far unitary evolution : no decoherence so still pure state.

Construct density matrix

$$\rho_S = |\psi\rangle\langle\psi| = \frac{2\Omega_R}{\pi} \exp\left[-(\frac{\Omega_R}{2}(y-y')^2 - \frac{\Omega_R}{2}(y+y')^2 - i\Omega_I(y^2-y'^2)\right]$$

As $\Omega_R/k = e^{-2r} \ll 1 \Rightarrow$ off-diagonal terms get killed off So far unitary evolution : no decoherence so still pure state.

Construct density matrix

$$\rho_S = |\psi\rangle\langle\psi| = \frac{2\Omega_R}{\pi} \exp\left[-(\frac{\Omega_R}{2}(y-y')^2 - \frac{\Omega_R}{2}(y+y')^2 - i\Omega_I(y^2-y'^2)\right]$$

As $\Omega_R/k = e^{-2r} \ll 1 \Rightarrow$ off-diagonal terms get killed off So far unitary evolution : no decoherence so still pure state.

Starobinsky, Kiefer and Polarski's decoherence ansatz (1998) Couple to environment ρ_{SE} , we add a decoherence term

$$\rho'_S = \operatorname{Tr}_E \rho_{SE} = \rho_S \times \exp\left[-\frac{\zeta}{2}(y-y')^2\right] \qquad \zeta \gg \Omega_R$$

New mixed state is still a gaussian but with axes (e^r, ζ)

Question 1 : is the decoherence basis parallel to $\{y_k\}$? Question 2 : how to quantify "quantumness"?

We will model ρ_{SE} and use **quantum discord** to answer both questions.

Ollivier and Zurek (2001) Henderson and Vedral (2001)

Quantum Discord Ollivier and Zurek (2001)

Classical Mutual Information

J(A:B) = H(A) - H(A|B)

A and B correlated, mutual info is how much we learn more about A when B is found out.

Classical pdf, Bayes Theorem H(A|B) = H(A, B) - H(B)Get equivalent expression I(A:B) = H(A) + H(B) - H(A, B)

Quantum Discord Ollivier and Zurek (2001)

Classical Mutual Information

J(A:B) = H(A) - H(A|B)

A and B correlated, mutual info is how much we learn more about A when B is found out.

Classical pdf, Bayes Theorem H(A|B) = H(A, B) - H(B)Get equivalent expression I(A:B) = H(A) + H(B) - H(A, B)Quantum generalization: replace Shannon with Von Neumann $H(A) \rightarrow S(A)$

$$I(A:B) \to \mathcal{I}(A:B) = S(A) + S(B) - S(A,B)$$
$$\stackrel{???}{}_{???}$$
$$J(A:B) \to \mathcal{J}(A:B) = S(A) - S(A|B)$$

Thursday, August 28, 14

Quantum Discord

"Finding out B" = making measurement on B but quantum mechanically this will disturb A!

Quantum Discord

What is the quantum version of S(A|B)?

"Finding out B" = making measurement on B but quantum mechanically this will *disturb* A!

Ollivier and Zurek (2001) propose the following: I. Given some basis of measurements on B $\{\Pi_k^B\}$ 2. Each Π_k^B measurement occurs with prob. P_k and $\rho_{AB} \rightarrow \rho_{A|B=\Pi_k^B} = \frac{\rho_{AB} \Pi_k^B}{P_k}$

3. Define $S(A|B = \{\Pi_k^B\}) = \sum_k P_k S(\rho_{A|B=\Pi_k^B})$

4. Quantum Discord is then

$$\delta(A:B)_{\Pi^B_k} = \mathcal{I}(A:B) - \mathcal{J}(A:B)_{\Pi^B_k} > 0$$

Quantum Discord

Some facts on Discord :

I. Zero discord $\delta(A:B)_{\prod_{k=1}^{B}} = 0$ means decoherence occurred in "pointer basis" and no entanglement. Can define to be "Classical".

2. Mixed Separable state can have *non-zero* discord. No entanglement \neq no quantum correlations!

3. Basis-independent discord : minimize over all possible decoherence basis.

4. Recently shown separable 2 qubits computers with discord is exponentially faster than classical computers. Datta, Shaji, Caves (2007)

Start with Starobinsky-Polarski-Kiefer Gaussian ansatz

$$\rho_S' \rightarrow W(y,p) = \frac{1}{\pi} \exp\left[-\frac{1}{2}\mathbf{x}\sigma_S^{-1}\mathbf{x}^T\right], \ \sigma_S(\Omega_R,\Omega_I,\zeta)$$

We want to find a joint density matrix ρ_{SE} such that $\rho_S = \text{Tr}_E(\rho_{SE})$

Start with Starobinsky-Polarski-Kiefer Gaussian ansatz

$$\rho_S' \rightarrow W(y,p) = \frac{1}{\pi} \exp\left[-\frac{1}{2}\mathbf{x}\sigma_S^{-1}\mathbf{x}^T\right], \ \sigma_S(\Omega_R,\Omega_I,\zeta)$$

We want to find a joint density matrix ρ_{SE} such that

 $\rho_S = \mathrm{Tr}_E(\rho_{SE})$

Not unique and continuous states are HARD. A way forward is to assume that ρ_{SE} is also Gaussian.

A unique pure gaussian ρ_{SE} can be constructed ("gaussian purification" of ρ_S).

 $W(y_1, y_2, p_1, p_2) = \frac{1}{\pi} \exp\left[-\frac{1}{2}\mathbf{x}\sigma_{SE}^{-1}\mathbf{x}^T\right] \quad \mathbf{x} = (y_1, p_1, y_2, p_2)$

$$a = -\Omega_I/k$$
, $\lambda = \Omega_R/k$, $\xi = \zeta/k$

Thursday, August 28, 14

A unique pure gaussian ρ_{SE} can be constructed ("gaussian purification" of ρ_S).

Perturb around ρ_{SE} to obtain general mixed states.

Given pure state bipartite ρ_{SE} we can compute the discord (turns out to be basis independent)

$$\delta(A:B) = \frac{1 + \sqrt{1 + \chi}}{2} \log\left(\frac{1 + \sqrt{1 + \chi}}{2}\right) - \frac{\sqrt{1 + \chi} + 1}{2} \log\left(\frac{\sqrt{1 + \chi} - 1}{2}\right) \ , \ \chi = \frac{\zeta}{\Omega_R} \gg 1$$

Zero when $\zeta = 0$ so the non-decohered perturbations has classical statistics!

This is actually equal to the Von Neumann entropy $\delta(A:B) = S(\rho_S)$

(Kiefer, Starobinsky and Polarski 1999)

Reason : ρ_{SE} is pure, and discord captures *mixed* state quantum correlations beyond entanglement entropy.

Still work in progress : mixed ρ_{SE}

Summary

I. Environment picks out the basis of which we measure quantum cosmological correlations.

2. Even if cosmological perturbations are highly squeezed, measurements in off-basis may retain "quantum" correlations.

3. Propose a gaussian construction of joint ρ_{SE} perturbations-environment bipartite state

4. Propose quantum discord as robust measure of quantum correlations in the joint system.