Mysteries of the large-angle microwave sky

Dragan Huterer

Kavli Institute for Cosmological Physics, Chicago

Collaborators:

Craig Copi (CWRU), Dominik Schwarz (Bielefeld), Glenn Starkman (CWRU) Chris Gordon, Wayne Hu, Tom Crawford (Chicago)

How does the universe look at largest observable scales?

ILC map, WMAP collaboration

Outline

Motivation and overview of concurrent findings

Multipole Vectors

Large-scale alignments

Various explanations

Future prospects and conclusions

Low power on large scales

Spergel et al 2003: 0.2% of sims have less power at angles >60 deg

l=2, 3 are aligned and planar

$$\hat{L}_{\ell}^{2} \equiv \frac{\sum_{m=-\ell}^{\ell} m^{2} |a_{\ell m}|^{2}}{\ell^{2} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^{2}}$$

l=3 is planar: P~1/20

l=2,3 is are aligned: $P \sim 1/60$

de Oliveira-Costa, Tegmark, Zaldarriaga & Hamilton 2004

N/S power asymmetry

South (ecliptic) has more power than north

Eriksen et al 2004; Hansen, Banday and Gorski 2004

Multipole vectors!

Spherical Harmonics:

$$\frac{\delta T}{T}(\theta,\phi) = \sum_{l,m} a_{lm} Y_{lm}(\theta,\phi), \qquad C_{\ell} \equiv \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

Multipole Vectors:

$$\sum_{m=-\ell}^{\ell} a_{lm} Y_{lm}(\theta, \phi) = A^{(\ell)} \left(\mathbf{v}_{1}^{(\ell)} \cdot \mathbf{e} \right) \cdots \left(\mathbf{v}_{\ell}^{(\ell)} \cdot \mathbf{e} \right)$$

$$``a_{i_{1} \dots i_{l}}^{(\ell)} \leftrightarrow A^{(l)} \left[\mathbf{v}_{1}^{(\ell)} \otimes \mathbf{v}_{2}^{(\ell)} \otimes \dots \mathbf{v}_{\ell}^{(\ell)} \right]''$$

Lth multipole <=> L (headless) vectors, plus a constant

Copi, Huterer & Starkman 2003; <u>http://www.phys.cwru.edu/projects/mpvectors/</u>

Theorem: Every homogeneous polynomial *P* of degree ℓ in *x*, *y* and *z* may be written as

$$P(x, y, z) = \lambda \cdot (a_1 x + b_1 y + c_1 z) \cdot (a_2 x + b_2 y + c_2 z) \dots \cdot (a_\ell x + b_\ell y + c_\ell z) + (x^2 + y^2 + z^2) \cdot R$$

where *R* is a homogeneous polynomial of degree $\ell - 2$. The decomposition is unique up to reordering and rescaling the linear factors.

Example (Y_{20}) :

$$P(x,y) = x^{2} + y^{2} - 2z^{2}$$

= -3(z)(z) + (x^{2} + y^{2} + z^{2})(1)

Katz & Weeks, astro-ph/0405631

Multipole vectors of our sky

Copi, Huterer & Starkman 2003

Maxwell's multipole vectors

Potential of:

Dipole: $\nabla_{\mathbf{v_1}} \frac{1}{r} = -\frac{\mathbf{v_1} \cdot \mathbf{r}}{r^3}$ Quadrupole: $\nabla_{\mathbf{v_2}} \nabla_{\mathbf{v_1}} \frac{1}{r} = \frac{3(\mathbf{v_1} \cdot \mathbf{r})(\mathbf{v_2} \cdot \mathbf{r}) - r^2(\mathbf{v_1} \cdot \mathbf{v_2})}{r^5}$

l'th multipole:
$$\nabla \mathbf{v}_{\ell} \dots \nabla_{\mathbf{v}_2} \nabla_{\mathbf{v}_1} \frac{1}{r}$$

$v_1 \dots v_\ell$ are the multipole vectors

Maxwell 1892; Weeks 2004

Why multipole vectors?

- A different representation of the CMB sky than the spherical harmonics, related highly non-linearly
- Ideally suited for looking for planarity/directionality
- Many interesting properties, theorems (Katz & Weeks 2004, Weeks 2005, Lachieze-Rey 2004, Dennis 2005...)
- (Reviewed in Copi, Huterer, Schwarz & Starkman astro-ph/0508047)

Also: discussed by J.C. Maxwell in his "Treatise on Electricity and Magnetism" in 1892!!

Normals to multipole vectors

 $\mathbf{w}_{ij}^{(\ell)} \equiv \pm \left(\mathbf{v}_i^{(\ell)} imes \mathbf{v}_j^{(\ell)}
ight)$

"oriented areas"

L=3

L=2

L=2+3 alignments

Schwarz, Starkman, Huterer & Copi 2004

Alignments found at L=2, 3

- The four area vectors are mutually close (99.0-99.9% CL)
- They lie close to ecliptic plane (98%-99% CL)
- They lie close to equinoxes and dipole (99.8% CL)
- Ecliptic plane carefully separates weak from strong extrema (93%-99.6% CL)

Axis of evil: (b, l)=(60, -100)

l=5 in galactic coordinates

L=5, gal frame

Preferred-axis vectors at 2<=L<=5 are unusually close (99.9% CL)

L=5,AOE frame

l=3 in preferred frame

Land & Magueijo 2005

Systematic checks: sky cut

Errors increase sharply, but results consistent with full-sky result

Copi, Huterer, Schwarz & Starkman 2006

Systematic checks: foreground missubtraction

Adding (known) foregrounds leads to galactic, and not ecliptic, alignments

What about COBE?

Using COBE MCMC maps from Wandelt, Larson & Lakshminarayanan 2003

Copi, Huterer, Schwarz & Starkman 2006

4 classes of explanations:

- Astrophysical (e.g. an object or other source of radiation in the Solar System)
 - BUT: we think we know the Solar System. It would need to be a large source and undetected in data cross-checks.
- Instrumental (e.g. there is something wrong with WMAP instrument measuring CMB at large scales)
 - BUT: the instruments have been extremely well calibrated and checked. Plus, why would they pick out the Ecliptic plane?
- Cosmological (e.g. some property of the universe inflation or dark energy for example – that we do not understand)
 - This is the most exciting possibility. BUT: why would the new/unknown physics pick out the Ecliptic plane?
- These alignments are a pure fluke!
 - BUT: they are <0.1% likely!</p>

Example: non-linear detector

Suppose that the WMAP detectors are slightly (1%) nonlinear

 $T_{\rm obs}(\hat{\mathbf{n}}) = T(\hat{\mathbf{n}}) + \alpha_2 T(\hat{\mathbf{n}})^2 + \alpha_3 T(\hat{\mathbf{n}})^3 + \dots$

The biggest signal on the sky is the dipole

 $T(\hat{\mathbf{n}}) = 3.3mK\cos(\theta)$

So with $\alpha_2 \sim \alpha_3 \sim 10^{-2}$, dipole anisotropy is modulated into a 10^{-5} quadrupole and octopole with m = 0 in the dipole frame.

Sadly: doesn't work since would have been seen when observing $\sim 1K$ sources (in lab, Jupiter, etc).

Gordon, Hu, Huterer & Crawford 2006

Additive schemes "don't work" $\hat{T}(\hat{\mathbf{n}}) = T_{intr}(\hat{\mathbf{n}}) + T_{extra}(\hat{\mathbf{n}})$

Double (likelihood) penalty:

- Intrinsic sky is less likely than observed
- Requires a chance cancellation

True for all additive schemes: Solar System contamination, Bianchi models, etc

Gordon, Hu, Huterer & Crawford, astro-ph/0509301

Multiplicative modulation can work

 $\hat{T}(\hat{\mathbf{n}}) = T(\hat{\mathbf{n}}) \left[1 + w(\hat{\mathbf{n}})\right]$

 $w(\hat{\mathbf{n}}) \propto Y_{20}(\hat{\mathbf{n}})$ example

Best-fit L=1,2 multiplicative modulation from WMAP 123

Spergel et al, 2006

Low power on large scales

Spergel et al 2003: 0.2% of sims have less power at angles >60 deg

Copi, Huterer, Schwarz & Starkman astro-ph/0605135

Copi, Huterer, Schwarz & Starkman astro-ph/0605135

Future data and prospects

- WMAP is probably as good as it will get on large scales (as seen in year 1 vs year 123)
- Nevertheless, understanding of fine details is improving and is crucial.
- Planck will provide a great check of these measurements (very different experiment)
- Polarization maps with relatively high S/N, when eventually available, will provide even more leverage.
- The level of expected polarization "alignments" is model dependent
- In principle, can map out largest-scale fluctuations from wide-field, large-volume large-scale structure surveys (e.g. LSST; Zhan, Knox et al 2005)

Conclusions

- Alignments with the ecliptic plane and/or dipole are sufficiently significant to be very interesting despite the a posteriori nature of these observations
- No convincing explanations so far
- Other observed anomalies (N/S asymmetry, L=4-6 etc) very intriguing and possibly related
- Multipole vectors are a great tool to study alignments and directionalities in the CMB
- Pixel-space C(theta) low at 99.97% CL even more than in year 1

Example: lensing of the dipole

Small scale anisotropy is induced by the "moving cluster effect" (or, nonlinear ISW effect)

Picks up the dipole direction "for free"; itself has a dipolar pattern around the center of mass

Sadly, it's way too small:

$$\frac{\Delta T}{T} = 0.5 \ \mu \mathrm{K} \ \left(\frac{v_{\perp}}{300 \ \mathrm{km \ sec^{-1}}}\right) \left(\frac{M}{10^{16} \ M_{\mathrm{sun}}}\right) \left(\frac{R}{10 \ \mathrm{Mpc}}\right)^{-1}$$

Vale astro-ph/0509039; Cooray & Seto astro-ph/0510137