Estimators For Extracting (Primordial) Non-Gaussianity

Eiichiro Komatsu
University of Texas, Austin
June 8, 2007
Why Study NG? (Why Care?!)

- Who said that CMB should be Gaussian?
 - Don’t let people take it for granted!
 - It is remarkable that the observed CMB is (very close to being) Gaussian.
 - The WMAP map, when smoothed to 1 degree, is entirely dominated by the CMB signal.
 - If it were still noise dominated, no one would be surprised that the map is Gaussian.
 - The WMAP data are telling us that primordial fluctuations are very close to being Gaussian.
 - How common is it to have something so close to being Gaussian in astronomy? E.g., Maxwellian velocity distribution, what else?
 - It may not be so easy to explain that CMB is Gaussian, unless we have a compelling early universe model that predicts Gaussian primordial fluctuations: *Inflation*. A strong theoretical prior!
 - “Gaussianity” should be taken as seriously as “Flatness”.
Gaussianity vs Flatness

- Most people are generally happy that geometry of our Universe is flat.
 - $1 - \Omega_{\text{total}} = -0.003 (\pm 0.013, -0.017)$ (68% CL) (WMAP 3yr+HST)
 - Geometry of our Universe is consistent with being flat to $\sim 3\%$ accuracy at 95% CL.

- What do we know about Gaussianity?
 - For $\Phi = \Phi_G + f_{\text{NL}} \Phi_G^2$, $-54 < f_{\text{NL}} < 114$ (95% CL) (WMAP 3yr; you can improve on this, see Creminelli et al.)
 - Primordial fluctuations are consistent with being Gaussian to $\sim 0.1\%$ (0.001 in rms power) accuracy at 95% CL.

- Inflation is supported more by Gaussianity of primordial fluctuations than by flatness. Bah!
How Do We Test Gaussianity of CMB?
Two approaches to Finding NG.

I. Null (Blind) Tests / “Discovery” Mode

- This approach has been most widely used in the literature.
- One may apply one’s favorite statistical tools (higher-order correlations, topology, isotropy, etc) to the data, and show that the data are \((in)consistent\) with Gaussianity at xx% CL.
- PROS: This approach is model-independent. Very generic.
- CONS: We don’t know how to interpret the results.
 - “The data are consistent with Gaussianity” --- what physics do we learn from that? It is not clear what could be ruled out on the basis of this kind of test.

II. “Model-testing”, or “Strong Prior” Mode

- Somewhat more recent approaches.
- Try to constrain “NG parameter(s)” (e.g., \(f_{NL}\))
- PROS: We know what we are testing, we can quantify our constraints, and we can compare different data sets.
- CONS: Highly model-dependent. We may well be missing other important NG signatures.
Recent Tendency

I. Null (Blind) Tests / “Discovery” Mode

- This approach is being applied mostly to the “large-scale anomaly” of the WMAP data.
 - North-south asymmetry
 - Quadrupole-octopole alignment
 - Some pixels are too cold
 - “Axis of Evil”
 - Large-scale modulation

II. “Model-testing” Mode

- A few versions of f_{NL} have been constrained using the bispectrum, Minkowski functionals and other statistical methods.
Simplified Model: \[\Phi(x) = \Phi_G(x) + f_{NL} \Phi_G^2(x) \]

- Working assumption: \(f_{NL} \) is independent of scales
 - Clearly an oversimplification!
 - Note, however, that this form is predicted by curvaton models and the non-linear Sachs-Wolfe effect in the large-scale limit.
 - Motivated by Salopek & Bond (1990, 1991)

- Why use this \textit{ansatz}?
 - A “bench mark model” (i.e., better than a toy model.)
 - See Creminelli et al. (2005) for an alternative ansatz.

- Explore different statistical tools
 - Bispectrum is the best for measuring \(f_{NL} \) (Creminelli et al. 2007); however…
 - It is unlikely that people would believe the first detection from the bispectrum, unless it is confirmed by the other statistical tools.
 - There are models which can be discriminated by a combination of, e.g., bispectrum and trispectrum.
Confusion about f_{NL}

- What is f_{NL} that is actually constrained by WMAP?
 - When we expand Φ as $\Phi = \Phi_L + f_{NL} \Phi_L^2$, Φ is Bardeen's curvature perturbation, Φ_H, in the matter-dominated era.
 - In the SW limit, temperature anisotropy is $\Delta T/T = -(1/3)\Phi$.
 - A positive f_{NL} results in a negative skewness of ΔT.
- In terms of the primordial curvature perturbation, R, Bardeen's curvature perturbation in the matter era is:
 - $\Phi_L = (3/5)R_L$.
 - Therefore, $R = R_L + (3/5)f_{NL} R_L^2$.
 - Usually, people use the convention that $\zeta = +R$.
 - For some reason, Juan Maldacena used $\zeta = -R$, and thus the equation looked like $\zeta = \zeta_L - (3/5)f_{NL} \zeta^2$. He said in his paper that his definition of ζ was different from the usual one by the sign.

Useful to remember that

- a positive $f_{NL} = a$ negative skewness in temperature = a positive skewness in matter density.
Are We Ready for Planck?

- We need to know the predicted form of statistical tools as a function of model parameters to fit the data.

- For $\Phi = \Phi_G + f_{NL} \Phi_G^2$, there are only three statistical tools for which the analytical predictions are known:
 - The angular bispectrum of
 - Temperature: Komatsu & Spergel (2001)

 - The angular trispectrum
 - Exact (T): Kogo & Komatsu (2006)
 - Exact (P): N/A

 - Minkowski functionals
 - Exact (T): Hikage, Komatsu & Matsubara (2006)
 - Exact (P): N/A (MFs of an E-mode map?)
How About Large-scale Structure?

- Non-Gaussianity in galaxy distribution is most useful for determining galaxy bias. How about primordial NG?
 - Bispectrum (Verde et al. 2000)
 - *The future high-z galaxy survey (e.g., CIP) can beat CMB! (Emiliano Sefusatti’s talk)*
 - Trispectrum
 - N/A, to my knowledge
 - Minkowski functionals (Hikage, Komatsu & Matsubara 2006)
 - *Not very competitive (f_{NL} \sim 100 for CIP), but still a valuable cross-check of the results from bispectrum.*

- Mass function (Matarrese, Verde & Jimenez 2000)
 - Should they extend the original formalism based on Press-Schechter to include an ellipsoidal collapse (a la Sheth&Tormen): the original formula does not fit simulations (Kang, Norberg & Silk 2007); wait a minute, oh yes, it does! (Sabino Matarrese’s talk)
 - Limitation: sensitive only to a positive skewness

- Void Ellipticity Distribution (Park & Lee 2007)
 - Very interesting, because it is sensitive to a negative skewness!
PS prediction underestimates the NG effect by a factor of 2-3? (see, however, Sabino’s talk)
Void Ellipticity Distribution

- Analytical formula agrees with simulations remarkably well.
- Interesting to extend it to NG cases!
- A probe of negatively skewed density distribution from LSS?

Park & Lee (2007)
Ingredient: Probability Distribution of the Eigenvalues of the Tidal Tensor

- Eigenvalues of the tidal tensor: $\lambda_1, \lambda_2, \lambda_3$
 - Tidal tensor $= \Psi_{,ij}$
- Probability distribution of $\lambda_1, \lambda_2, \lambda_3$ from a Gaussian field is given analytically by Doroshkevich (1970).
 - To do: obtain the distribution of $\lambda_1, \lambda_2, \lambda_3$ from a non-Gaussian field (e.g., f_{NL})
- Straightforward, and unique.
Back to CMB: How Do They Look?

Simulated temperature maps from $\Phi(x) = \Phi_G(x) + f_{NL} \Phi_G^2(x)$

- $f_{NL} = 0$
 - Gaussian simulation, $n=1024^3$

- $f_{NL} = 100$
 - Gaussian simulation, $f_{NL}=100$, 1024^3

- $f_{NL} = 1000$
 - Gaussian simulation, $f_{NL}=1000$, 1024^3

- $f_{NL} = 5000$
 - Gaussian simulation, $f_{NL}=5000$, 1024^3
Is One-point PDF Useful?

Conclusion: 1-point PDF is not very useful. (As far as CMB is concerned.)

A positive f_{NL} yields negatively skewed temperature anisotropy.
The one-point distribution of CMB temperature anisotropy looks pretty Gaussian.

- Galaxy has been masked.
- Left to right: Q (41GHz), V (61GHz), W (94GHz).
Komatsu et al. (2003); Spergel et al. (2006); Creminelli et al. (2006)

Bispectrum Constraints

\[-58 < f_{NL} < 134 (95\%) \quad (1\text{yr})\]

\[-54 < f_{NL} < 114 (95\%) \quad (3\text{yr})\]
How do we measure f_{NL} from Planck?

- Good News!
 - We are now ready to use both the temperature and polarization data from Planck to measure f_{NL}.
 - Amit Yadav, EK & Ben Wandelt (2007a,b)
 - Amit’s code is “Planck-ready”.

Stay tuned for Ben Wandelt’s talk.
Trispectrum: Not For WMAP, But Perhaps Useful For Planck…

Kogo & Komatsu (2006)
Minkowski Functionals (MFs)

The number of hot spots minus cold spots.

V_0: surface area

V_1: Contour Length

V_2: Euler Characteristic

Komatsu et al. (2003); Spergel et al. (2006); Hikage et al. (2007)

MFs from WMAP

(1yr) \(f_{NL} < 137(95\%) \) \(\rightarrow \) \(-70 < f_{NL} < 91(95\%) \)

Area

Contour Length

Genus
Analytical formulae of MFs

Perturbative formulae of MFs (Matsubara 2003)

\[V_k(\nu) = \frac{1}{(2\pi)^{(k+1)/2}} \frac{\omega_2}{\omega_{2-k} \omega_k} \left(\frac{\sigma_1}{\sqrt{2\sigma_0}} \right)^k e^{-\nu^2/2} \{ H_{k-1}(\nu) \} \]

Gaussian term

\[+ \left[\frac{1}{6} S^{(0)} H_{k+2}(\nu) + \frac{k}{3} S^{(1)} H_k(\nu) + \frac{k(k-1)}{6} S^{(2)} H_{k-2}(\nu) \right] \sigma_0 + O(\sigma_0^2) \]

leading order of Non-Gaussian term

\[\sigma_j^2 = \frac{1}{4} \sum_l (2l + 1) \left(\frac{l(l+1)}{2} \right) C_l W_l^2 \]

\[W_l: \text{smoothing kernel} \]

\[\omega_0 = 1, \omega_1 = 1, \omega_2 = \pi, \omega_3 = 4\pi / 3 \]

\[H_k: k-\text{th Hermite polynomial} \]

\[S^{(a)}: \text{skewness parameters } (a = 0, 1, 2) \]

In weakly non-Gaussian fields (\(\sigma_0 << 1 \)), the non-Gaussianity in MFs is characterized by three skewness parameters \(S^{(a)} \).
3 “Skewness Parameters”

- **Ordinary skewness**

\[S^{(0)} \equiv \frac{\langle f^3 \rangle}{\sigma_0^4}, \]

- **Second derivative**

\[S^{(1)} \equiv -\frac{3}{4} \frac{\langle f^2 \nabla^2 f \rangle}{\sigma_0^2 \sigma_1^2}, \]

- **(First derivative)^2 x Second derivative**

\[S^{(2)} \equiv -\frac{3d}{2(d-1)} \frac{\langle (\nabla f) \cdot (\nabla f) \nabla^2 f \rangle}{\sigma_1^4}, \]
Skewness parameters for CMB

\[S^{(0)} = \frac{3}{2\pi \sigma_0^4} \sum_{2 \leq l_1 \leq l_2 \leq l_3} I_{l_1 l_2 l_3}^2 b_{l_1 l_2 l_3} W_{l_1} W_{l_2} W_{l_3}, \]

\[S^{(1)} = \frac{3}{8\pi \sigma_0^2 \sigma_1^2} \sum_{2 \leq l_1 \leq l_2 \leq l_3} [l_1(l_1 + 1) + l_2(l_2 + 1) + l_3(l_3 + 1)] I_{l_1 l_2 l_3}^2 b_{l_1 l_2 l_3} W_{l_1} W_{l_2} W_{l_3}, \]

\[S^{(2)} = \frac{3}{4\pi \sigma_1^4} \sum_{2 < l_1 < l_2 < l_3} \{[l_1(l_1 + 1) + l_2(l_2 + 1) - l_3(l_3 + 1)]l_3(l_3 + 1) + \text{(cyc.)}\} I_{l_1 l_2 l_3}^2 b_{l_1 l_2 l_3} W_{l_1} W_{l_2} W_{l_3}. \]

No weight on \(l \) \(\rightarrow \) sensitive to low \(l \)

\(l^2 \) weight

\(l^4 \) weight \(\rightarrow \) sensitive to high \(l \)

Analytical predictions of bispectrum at \(f_{\text{NL}} = 100 \) (Komatsu & Spergel 2001)

Skewness parameters as a function of a Gaussian smoothing width \(\theta_s \)
Note: This is Generic.

- The skewness parameters are the direct observables from the Minkowski functions.
- The skewness parameters can be calculated directly from the bispectrum.
- It can be applied to *any* form of the bispectrum!
 - Statistical power is weaker than the full bispectrum, but the application can be broader than a bispectrum estimator that is tailored for a specific form of non-Gaussianity.
Comparison of analytical formulae with Non-Gaussian simulations

Comparison of MFs between analytical predictions and non-Gaussian simulations with $f_{\text{NL}}=100$ at different Gaussian smoothing scales, θ_s

Simulations are done for WMAP; survey mask (Kp0 mask), noise pattern and antenna beam pattern

Analytical formulae agree with non-Gaussian simulations very well.
How do we measure f_{NL} from Planck?

- Good News!
 - We are now ready to measure f_{NL} from Planck with the Minkowski Functionals.
 - A postdoc at the Univ. of Nottingham.
 - Chiaki’s code is “Planck-ready”.

Chiaki Hikage, EK, et al.
WMAP 8-year and Planck observations should be sensitive to $|f_{\text{NL}}| \sim 40$ and 20, respectively, at the 68% confidence level.
Primordial signal dominates only at a few hundred Mpc and beyond.

Need a large survey volume.
MFs from Large-scale Structure

<table>
<thead>
<tr>
<th>Volume</th>
<th>V_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Area</td>
<td>V_{sur}</td>
</tr>
<tr>
<td>Total Mean Curvature</td>
<td>V_{mean}</td>
</tr>
<tr>
<td>Euler Characteristics</td>
<td>V_{Eul}</td>
</tr>
</tbody>
</table>

Graphs showing V_0, V_{sur}, V_{mean}, and V_{Eul} as functions of ν. Parameters include $R_c=100h^{-1}\text{Mpc}$, $f_{\text{NL}}=100,50,0$ (solid), $-50,-100$ (dotted).
Summary

CMB: we are almost ready for Planck.
- Bispectrum (both T+P) is ready.
- Minkowski Functionals (T) are ready.
- Trispectrum is not ready yet.
 - Need a good estimator: done for COBE (Komatsu 2001), but not yet for WMAP.

LSS: it’s time to pay more attention.
- Bispectrum from LSS can beat CMB.
- Minkowski Functionals are ready.
- Need an improved model for mass functions.
 - Application to SPT clusters?