
Detection of gravitational lensing in the CMB

Kendrick Smith
University of Chicago

June 2007, “Life Beyond the Gaussian”

Reference: Smith, Zahn, and Doré, 0705.3980
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Gravitational lensing in the CMB

CMB photons are deflected by gravitational potentials between last
scattering and observer. This remaps the CMB while preserving
surface brightness:

T (n̂) → T (n̂ + d(n̂))

where d(n̂) is a vector field giving the deflection angle along line of
sight n̂.
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Gravitational lensing in the CMB

To first order, deflection angles are
a pure gradient field:

da(n̂) = ∇aφ(n̂)

where the lensing potential is given
by the line-of-sight integral

Antony Lewis

φ(n̂) = −2

∫ χ∗

0
dχ

(
χ∗ − χ

χχ∗

)
Ψ(χn̂, η0 − χ)

RMS deflection: ∼2.5 arcmin, coherent on degree scales (` ∼ 100)

Scope of talk: We will present a 3.4σ detection from combining
WMAP3 with radio galaxy counts from NVSS.



CMB lensing: why bother?

Gravity waves from inflation:

I In polarization, lensing is a contaminant unless removed

Neutrino mass:

I Complementary to neutrino oscillations (
∑

mν vs ∆m2
ν)

I e.g. Planck: ∼ 0.14 eV from CMB lensing (Lesgourges et al
2005)

Counterpart to galaxy weak lensing:

I Probes same lensing potential as high-redshift galaxies, but
completely different systematics

I CMB: Beam effects, point sources, SZ and other foregrounds

I Galaxies: PSF correction, intrinsic alignments, photo-z errors

Most robust measurement: cross-correlation between the two?



CMB lensing: power spectrum

How can CMB lensing be detected
in data?

First idea: Try to detect effect of
lensing on power spectrum CTT

` .

Effect is too small in WMAP: lens-
ing can only be “detected” at
(1/3)σ directly from power spec-
trum.



CMB lens reconstruction

Deflection angles

+

Unlensed CMB

−→

Lensed CMB

Idea: From observed CMB, reconstruct deflection angles (Hu 2001)

Lensed CMB

−→

Reconstruction + noise



CMB lens reconstruction

Lensing weakly correlates CMB modes with l 6= l′:

〈T (l)T (l′)∗〉 ∝ φ(l− l′).

Reconstructed field φ̂ is quadratic in CMB temperature:

φ̂(n̂) = ∂a
[
α(n̂)∂aβ(n̂)

]
α(n̂) =

∫
d2l

(2π)2

(
1

CTT
` + NTT

`

)
T (l)e i l·bn

β(n̂) =

∫
d2l

(2π)2

(
CTT
`

CTT
` + NTT

`

)
T (l)e i l·bn

Second idea for detecting CMB lensing: look for extra power in φ̂.

Compute Cφφ
` : quadratic in φ̂, or four-point in CMB.

WMAP3: statistical errors only give 1σ.

In addition, systematics likely to be difficult. . .



CMB lens reconstruction: cross correlation

Third idea for detection: cross-correlate φ̂ to galaxy counts
⇒ Highly correlated, so “boosts” signal-to-noise

Systematics also tamer in cross-correlation

Compute Cφg
` : three-point estimator

First attempt: LRG’s from Sloan, 1σ result (Hirata et al 2004)
Our approach: Radio galaxies from NVSS.



NVSS: NRAO VLA Sky Survey

1.4 GHz sky catalog, 50% complete at 2.5 mJy.

Mostly AGN-powered radio galaxies, quasars, nearby star-forming
galaxies

Well-suited for cross-correlating to
WMAP lensing potential:

I Nearly full sky coverage
(fsky = 0.82)

I Low shot noise (Ngal ∼ 1.8× 106)

I High median redshift (z ∼ 0.9)
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Simulation (steps 1-4):

I Monte Carlo simulations used
for calibration, assigning
errors

Analysis (steps 5-8):

I Filter WMAP (Q-band,
V-band, W-band) and NVSS
datasets

I Lens reconstruction from
WMAP

I Cross-correlate: estimate Cφg
`

in bands
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CMB filtering (step 5):

Input: raw WMAP maps

Q1Q2V1
V2W1W2W3W4

Output: maximum likelihood map
obtained by combining all channels
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Lens reconstruction (step 6):

Input: Maximum likelihood CMB
map

Output: Reconstructed lensing po-
tential φ̂ (shown bandlimited to
20 ≤ ` ≤ 40):
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NVSS filtering (step 7):

Input: NVSS source catalog

Output: Maximum likelihood
galaxy map (shown bandlimited to
20 ≤ ` ≤ 40):



Pipeline

Start
(1)

?
Gaussian fields {g`m, φ`m, aunlensed

`m }
?

(2)

?

(4)Lensed CMB alensed
`m

?
(3)

NVSS data

?
(7)

Filtered galaxy
field g̃`m
�

�
�
��

WMAP data

?
(5)

Filtered CMB ã`m
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Cross-correlation (step 8):

Input: Lensing potential and galaxy
fields (shown bandlimited to 20 ≤
` ≤ 40):

Output: Cross correlation Cφg
` ,

with estimator normalization and
statistical errors computed by
Monte Carlo

`2Cφg
` = (33.2± 10.5)× 10−7

(20 ≤ ` ≤ 40, stat.)



Main result (statistical errors only)

I Values obtained by
cross-correlating WMAP and
NVSS datasets

I Monte Carlo errors obtained
by cross-correlating WMAP
and NVSS simulations

Several-sigma (relative to simulations) correlation observed in data

How do we know that the correlation is lensing, rather than
something else?

Rest of talk: Null tests, systematics.



Check: different ways of computing Monte Carlo errors

Our default procedure is to corre-
late pairs of sims, but could also:

I Correlate WMAP data with
NVSS sims

I Correlate WMAP sims with
NVSS data

Three-way consistency is an important check

Shows that result only depends on correctness of one of the
simulation pipelines



Check: frequency dependence

Analyze each frequency channel in
WMAP separately

Results consistent between fre-
quencies

Because different frequencies are correlated, cannot combine three
sets of error bars in a straightforward way.

Best overall result obtained from Q+V+W combined map as
shown previously



Check: curl null test

Lensing potential is expected to be
a pure gradient:

da(n̂) = ∇aφ(n̂)

but consider ficticious curl compo-
nent instead:

da(n̂) = εab∇bψ(n̂)

Null test: Should get Cψg
` = 0.

χ2 = 12.1/8: high at 1σ, so Cψg
` null test passes.

Null test cannot monitor parity-invariant contaminants (e.g. point
sources), analagous to CEB

` = 0 in CMB polarization experiments.



Bispectrum perspective

Alternate approach to lensing estimator Cφg
` :

optimal estimator for 3-point signal b`1`2`3
induced by gravitational lensing.

Bispectrum: depends on triple `1`2`3 (power
spectrum C` depends on single `).



NVSS systematics: bright sources

NVSS maps show “ringing” near
bright sources

We treat this by masking ∼ 2000
sources > 1 Jy

Source mask included in statistical
errors

We include the mask in all results,
but neither C gg

` nor Cφg
` changes

significantly.

NVSS raw map: 2◦ × 2◦



NVSS systematics: declination gradients

Consider NVSS galaxy power spec-
trum C gg

` .

If analyzed straightforwardly, ob-
vious systematic contamination at
low `

Known systematic effect: equato-
rial striping (excess power for ` .
100)

Projecting out m = 0 modes ap-
pears to remove contaminant (no
evidence for higher values of m)



NVSS systematics: modeling uncertainty

NVSS redshift distribution is not
known very well; we found that
existing models, e.g. Gaussian
(Pietrobon 2006)

dN

dz
∝ exp

(
−(z − 1.1)2

2(0.8)2

)
did not fit C gg

` well.

However a small tweak, e.g. “lopsided Gaussian”:

dN

dz
∝

 exp
(
− (z−1.1)2

2(0.8)2

)
(z < 1.1)

exp
(
− (z−1.1)2

2(0.3)2

)
(z > 1.1)

results in a good fit. (Exception: ` ≤ 10.)



WMAP systematics: galactic foregrounds

Most of the foreground signal excluded by Kp0 mask: galactic
plane, ∼ 700 resolved point sources.

Dust: use FDS template (Finkbeiner et
al 1999)

Frequency dependence ∝ ν2

V-band (60 GHz) RMS: 6.4 µK.

Free-free emission: use Hα template
(Finkbeiner 2003, Bennett et al 2003)

Frequency dependence ∝ ν−2.14

V-band (60 GHz) RMS: 4.8 µK.



WMAP systematics: galactic foregrounds

Synchrotron: templates available on degree scales (Haslam 408
MHz, WMAP K− Ka), but not on CMB scales (` ∼ 400) used for
lensing.

Assume systematic errors from synchrotron equal to dust +
free-free!

Galactic
(`min, `max) Statistical Dust Free-free Total

(2, 20) 17.4± 22.4 ±0.4 ±1.4 ±3.6

(20, 40) 33.2± 10.5 ±0.2 ±0.5 ±1.4

(40, 60) 15.9± 7.8 ±0.2 ±0.3 ±1.0

(60, 80) 10.1± 6.3 ±0.1 ±0.3 ±0.8

(80, 100) 5.1± 5.8 ±0.1 ±0.3 ±0.8

(100, 130) 8.3± 4.3 ±0.1 ±0.2 ±0.6

(130, 200) 1.6± 2.5 ±0.1 ±0.1 ±0.4

(200, 300) −1.9± 2.2 ±0.1 ±0.1 ±0.4



WMAP systematics: beam asymmetry

WMAP beams are asymmetric, but
treated as isotropic in pipeline

(Q-band: 20% elliptical, V,W-band: 10-
20 dB substructure)

I Include beam asymmetry in
simulations, treat as source of
systematic error.

I Multipole expansion of beam
(s = 0 isotropic, s = 1 dipole, . . . )

I Convolution with higher-s
multipoles includes sky-varying
kernel which depends on scan
strategy



WMAP systematics: beam uncertainty

After beam asymmetry, the only beam effect is uncertainty in the
isotropic part

Beam
(`min, `max) Statistical Asymmetry Uncertainty Total

(2, 20) 17.4± 22.4 ±0.9 ±0.3 ±1.2

(20, 40) 33.2± 10.5 ±0.2 ±0.1 ±0.3

(40, 60) 15.9± 7.8 ±0.1 ±0.1 ±0.2

(60, 80) 10.1± 6.3 ±0.1 ±0.1 ±0.2

(80, 100) 5.1± 5.8 ±0.1 ±0.1 ±0.2

(100, 130) 8.3± 4.3 ±0.1 < 0.1 ±0.2

(130, 200) 1.6± 2.5 < 0.1 < 0.1 ±0.1

(200, 300) −1.9± 2.2 < 0.1 < 0.1 ±0.1



Point sources: approach

Only CMB point sources which are correlated to NVSS contribute

Too difficult to estimate point source contibution from models!

Approach: estimate level of point source contamination from data

Cross spectrum CTg
` has wrong scaling; must estimate bispectrum

∆CTg
` ∝

∑
i

Sini b`1`2`3 ∝
∑

i

S2
i ni

Most general bispectrum considered: b`1`2`3 = F (`3)

I Allows arbitrary point source clustering on degree scales

I Assumes clustering negligible on CMB scales (` ∼ 400)

I Nonlinear evolution neglected



Point sources: estimator

Optimal estimator for point source
bispectrum:

I “Quadratic reconstruction”
s(n̂) for point source power in
CMB

I Cross-correlate to NVSS: C sg
` .

No evidence for point sources seen in
data: χ2 = 11.7/12.

Allows tight systematic errors: any point source contribution must
be hidden beneath the detection threshhold



Point sources: systematic errors

Consider ensemble of simulations
with varying point source levels

Restrict to simulations with same
observed point source level as data

Point source contribution to lens-
ing:

∆Ĉφg
` = (−0.5± 1.7)× 10−7

Treat shift as part of systematic er-
ror: ±2.2× 10−7.

One final detail: Sunyaev-Zeldovich effect can be treated as part of
point source contribution for WMAP (SZ clusters not resolved by
WMAP beam).



Point sources: bottom line

Point sources are largest source of systematic error:

Point source + SZ
(`min, `max) Statistical Unresolved Resolved Total

(2, 20) 17.4± 22.4 ±10.9 ±0.5 ±11.4

(20, 40) 33.2± 10.5 ±4.9 ±1.0 ±5.9

(40, 60) 15.9± 7.8 ±2.8 ±1.5 ±4.3

(60, 80) 10.1± 6.3 ±2.0 ±0.3 ±2.3

(80, 100) 5.1± 5.8 ±1.1 ±0.2 ±1.3

(100, 130) 8.3± 4.3 ±0.6 ±0.2 ±0.8

(130, 200) 1.6± 2.5 ±0.3 ±0.1 ±0.4

(200, 300) −1.9± 2.2 ±0.3 ±0.1 ±0.4



Final result (including systematic errors)

Combine statistical errors with sys-
tematic errors considered previ-
ously:

I WMAP beam effects

I Galactic CMB foregrounds

I Point sources + SZ

To assess total statistical significance: fit to one large bandpower
in multiple of fiducial Cφg

` .

Result: 1.15± 0.34, i.e. a 3.4σ detection, consistent with the
fiducial model.



Conclusions

I Milestone: 3.4σ detection, not enough for precision cosmology
but in agreement with the predicted level.

I Future prospects: unlikely to exceed 5σ in next few years;
different story after Planck/SPT/ACT (e.g. Hu 2001: ∼ 60σ
from Planck alone).

I Many systematic checks: “sims vs data”, frequency
dependence, curl null test, WMAP beam effects, point sources
+ SZ

I Systematics largely unexplored outside WMAP/NVSS
datasets: point source + SZ contamination seems to be the
biggest problem (in particular, beam effects are small) but this
may not apply to upcoming higher-resolution surveys.


