Strong lensing probes of dark matter

See also talks on Tue afternoon by:

- Chris Fassnacht
- Daniel Gilman
- Cora Dvorkin
- Lukasz Wyrzykowski
- Siddharth Mishra-Sharma

Simon Birrer University of California, Los Angeles LSST Dark Matter Workshop, Chicago, Aug 5th 2019

Strong Gravitational Lensing

- Effect predicted by General Relativity
- Space-time curvature induced by matter creates an optical effect
- This effect is mostly "weak", leading to small distortions
- Rare alignments lead to multiple images of the same source strong lensing

Strong Gravitational Lensing

Can gravitational lensing discriminate between different dark matter models?

Strong Gravitational Lensing

Model	Probe	Parameter	Value
Warm Dark Matter	Halo Mass	Particle Mass	$m \sim 18 \mathrm{keV}$
Self-Interacting Dark Matter	Halo Profile	Cross Section	$\sigma_{\rm SIDM}/m_{\chi} \sim 0.1 10 {\rm cm}^2/{\rm g}$
Baryon-Scattering Dark Matter	Halo Mass	Cross Section	$\sigma \sim 10^{-30} \mathrm{cm}^2$
Axion-Like Particles	Energy Loss	Coupling Strength	$g_{\phi e} \sim 10^{-13}$
Fuzzy Dark Matter	Halo Mass	Particle Mass	$m \sim 10^{-20} \mathrm{eV}$
Primordial Black Holes	Compact Objects	Object Mass	$M > 10^{-4} M_{\odot}$
Weakly Interacting Massive Particles	Indirect Detection	Cross Section	$\langle \sigma v \rangle \sim 10^{-27} \mathrm{cm}^3 / \mathrm{s}$
Light Relics	Large-Scale Structure	Relativistic Species	$N_{\rm eff} \sim 0.1$

Resolved vs unresolved lensing

Observable degeneracies:

- clump mass
- clump profile
- clump position
- source size
- source shape
- mass sheet

. . .

- absolute scales

Strong lensing: a forward modeling example

Strong lensing: a forward modeling example

Lens modeling: example with perfect lens model

Input image

Input source

Reconstructed image

Reconstructed source

n max = 0

Image residuals

Source residuals

Simulation made with lenstronomy software, by Simon Birrer

software available: \$pip install lenstronomy
https://github.com/sibirrer/lenstronomy

Lens modeling: example with missing (sub)-structure

Input image

Input source

Reconstructed image

Reconstructed source

n max = 0

Image residuals

Source residuals

Simulation made with lenstronomy software, by Simon Birrer

software available: \$pip install lenstronomy
https://github.com/sibirrer/lenstronomy

Method 1: resolved maging

resolved strong lensing from galaxy surface brightness

lens modeling

sensitive to **individual** clumps near the Einstein ring

sensitivity depends on **spatial resolution** and **source** structure

quantifying a detection challenging and high S/N required

Koopman<mark>s 2005, Veget</mark>ti+2010, 2012, 2018 Birrer+2017, Hezaveh+ 2016, Ritondale+2018

Method 2: unresolved flux ratios

exclusion regions for a certain type of sub-clump

Statistical methods

Flux ratio distributions

Mass Function Macro Model Draw from $P(\theta_M)$ $\theta = (f_{sub}, M_{hm})$ θ_M Micro Model Micro Model substructure line of sight N_{los} N_{sub} from $P(N_{los} | \mu_{los})$ from $P(N_{sub} | \mu_{sub})$ m, xm, x,Ray Trace 100,000 runs per grid point Compute $P(d \mid \theta)$ 100% WDM single plane $\Sigma_{sub}=0.012~kpc^{-2}$ $z_{\rm lens} = 0.8$ $z_{\rm src} = 3.0$ $m_{\rm hm} = 10^8 M_{\odot}$ CDM single plane $N_{\rm LOS} = 5.7$ $\Sigma_{sub} = 0.012 \text{ kpc}^{-2}$ 75% N_{sub} CDM single plane $\Sigma_{sub} = 0.024 \text{ kpc}^{-2}$ \times ٨ WDM single plane including LOS Percent 50% CDM single plane including LOS 25% (smoother) (clumpier on small scales 0% -0.1 0.3 0.5 0.0 0.2 0.4 S_{smooth}

Convergence Power-spectrum

Hsueh+19, Gilman, Birrer+19

High resolution ELT / VLBI era

Resolution matters if:

- S/N ratio is high at the resolution element
- surface brightness variability at the resolution scale

ELT / VLBI era

Input image

Input source

Reconstructed source

Image residuals

Source residuals

Simulation made with lenstronomy software, by Simon Birrer

Current constraints

- resolved imagine: detection of 10⁽⁸⁻⁹⁾ (ish) halos, statistics is limited
- quasar flux ratios: Huesh+2019, Gilman, SB+2019 (on arXiv soon)

Spoiler alert: Tuesday talks by Chris Fassnacht and Daniel Gilman

- two independent teams working on different data sets to perform a similar analysis
- Consistent among each other
- Precision of order Lyman-alpha forest

Gilman, SB+19

Hsueh+19

Challenges

- Uncertainty in theory prediction of sub halo mass function (M, z)
- Selection (bias) of lenses
- Imaging: choosing a robust summary statistics

Figure: Gilman, SB+ 2019

Prospects with LSST

Strong lensing arcs are discovered in DES...

Jacobs+2019, DES collaboration

... and HSC...

Sonnenfeld+2018, HSC collaboration

and quasar lenses too...

discovered: Ostrovski+, Lemon+, Agnello+, Schechter+, Oguri+ and the STRIDES/DES collaboration

...and followed up...

...and more to come!

modeling: Shajib, Birrer+2018

Follow up coordination in the LSST era

- LSST will find 10'000s of arc lenses
 Collett 2015
- LSST will find 1000's of quasar lenses
 Oguri&Marshall 2010

Tasks:

- find the lenses knowing their selection function
- pick the right lenses (for your science)
- follow them up with the right facilities
- chose the right analysis technique

Finding, analyzing and doing the science in one unified framework

Summary

Gravitational lensing is an unique window to the dark universe

- LSST will find 10'000s of arc lenses
- LSST will find 1000's of quasar lenses
- follow-up and scalable analysis methods required