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In Weak Lensing (WL), we typically care about 
WHERE Dark Matter is, not WHAT it is… 

But that’s not always true!
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Outline

• WL and state-of-the-art (DES-centric)

• WL applications for Dark Matter physics: 

• Mass maps

• Towards the smallest halos

• Cluster profiles
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Weak Lensing
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Weak lensing is the lensing from the large-scale structure, and refers to the regime 
where you need to statistically extract the lensing signal from averaging over a very 
large number of galaxies.
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and clusters of galaxies. We also study the effect of various possi-
ble systematics in the data and quantify them based on correlation
analysis. We extend our analysis to identify large scale features in
the mass map which will be used for future studies.

This paper is organised as follows: In §2 we describe the theo-
retical foundation and methodology for constructing the mass maps
and galaxy density maps used in this paper. We then describe the
DES dataset we use in this work in §3, together with the simula-
tion used to interpret our results. In §4 we present the reconstructed
mass maps and discuss qualitatively the correlation of these maps
with foreground structure. In §5, we carry out a quantify the wide-
field mass-to-light correlation on different spatial scales using the
full 140 deg2 field. We show that our results are consistent with ex-
pectation from simulations. In §6 we estimate the level of contam-
ination by systematics in our results from a wide range of sources.
Finally, we conclude in §8.

2 METHODOLOGY

In this section we first briefly review the principles of weak lens-
ing in section 2.1. Then, we describe the background theory of our
mass reconstruction method in section 2.2. Finally in section 2.3,
we describe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in this
work to help confirm the signal measured in the weak lensing mass
maps.

2.1 Weak gravitational lensing

When light from galaxies passes through a foreground mass dis-
tribution, the resulting bending of light leads to the galaxy im-
ages being distorted (e.g. Bartelmann & Schneider 2001). This phe-
nomenon is called gravitational lensing. The mapping between the
source (b ) and lens (q ) plane coordinates can be described by the
lens equation:

b = A(q)q (1)

where A is the Jacobian of this mapping and is given by

A(q) = (1�k)
✓

1�µ1 �µ2
�µ2 1+µ1

◆
(2)

where k is the convergence, µi =
gi

1�k and gi is the shear. The pre-
multiplying factor (1� k) causes galaxy images to be dilated or
reduced in size, while the terms in the matrix cause distortion in
the image shapes.

Recall that the Friedmann-Robertson-Walker (FRW) metric
for a weakly perturbed Universe is given by

ds2 =

✓
1+

2F
c2

◆
dt2 �a(t)2

✓
1� 2F

c2

◆h
dr2 + r2dW2

i
(3)

where r is the comoving distance and F is the Newtonian poten-
tial. Under the Born approximation, we find that A is given by (e.g.
Bartelmann & Schneider 2001)

Ai j(q ,r) = di j �y,i j (4)

where the lensing deflection potential y,i j , or the projected gravi-
tational potential along the line of sight, for a flat Universe is

y (q ,r) = 2
c2

Z r

0
dr0

r
rr0

F
�
q ,r0

�
(5)

Comparison of Eqn. 4 with Eqn. 2 shows that

k =
1
2

—2y (6)

g = g1 + ig2 =
1
2
�
y,11 �y,22

�
+ iy,12 (7)

The Poisson equation for a density fluctuation d = D�D̄
D̄ is given by

—2F =
3H2

0 Wm

2a
d (8)

where D and D̄ are the density and average density when the Uni-
verse has a scale factor a. Using Eqn. 5 and Eqn. 6, we find that the
convergence measured at a sky coordinate q on sources at comov-
ing distance r can be written as

k(q ,r) =
3H2

0 Wm

2c2

Z r

0
dr0

(r� r0)r0

r
d (q ,r0)

a(r0)
(9)

Convergence for sources with a redshift distribution f (r) can be
written as

k(q) =
Z

k(q ,r) f (r)dr (10)

Using the Limber approximation, the angular power spectrum of
convergence can be written as

Ck (l) =
9H4

0 W2
m

4c4

Z
dr

p2(r)
a2(r)

Pd (l/r,r) (11)

where Pd (l/r,r) is the three dimensional matter power spectrum
and p(r) is the lensing efficiency defined

p(r) =
Z

dr0 f (r0)
r0 � r

r
. (12)

2.2 Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction based
on the method developed in Kaiser & Squires (1993). The Kaiser-
Squires (KS) method is known to work well up to a constant factor
as long as the structures are in the linear regime (Van Waerbeke
et al. 2013), i.e. scales larger than clusters. In the non-linear regime
(scales corresponding to clusters or smaller structures) improved
methods have been developed to recover the mass distribution (e.g.
Bartelmann et al. 1996; Bridle et al. 1998). In this paper we are in-
terested in the connection between mass and light on large scales;
we have therefore found that the KS method is suitable for our pur-
pose. The principle of the KS method is described below.

The Fourier transform of the observed shear, ĝ , relates to the
Fourier transform of the convergence, k̂ through

k̂(l)�k0 = D⇤(l)ĝ(l) (13)

where li = 2p
qi

, i = 1,2, are the Fourier counterpart for the angular
position qi, and k0 is the average projected mass (i.e. k for l = 0).
D(l) is defined as

D(l) =
l2
1 � l2

2 +2il1l2
|l|2

. (14)

The inverse Fourier transform of Eqn. 13 gives the convergence
for the observed field in real space. Ideally, the imaginary part of
the inverse Fourier transform will be zero as the convergence is a
real quantity. However, noise, systematics and masking can intro-
duce imaginary convergence as we will see later. In this paper we
will refer to the the real and imaginary parts of the reconstructed
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tions from simulations. In Sec. VII we estimate the level of
contamination by systematics in our results from a wide range
of sources. Finally, we conclude in Sec. VIII. For a summary
of the main results from this work, see the companion paper
in PRL [39].

II. METHODOLOGY

In this section we first briefly review the principles of weak
lensing in Sec. II A. Then, we describe the adopted mass re-
construction method in Sec. II B. Finally in Sec. II C, we de-
scribe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in
this work to help confirm the signal measured in the weak
lensing mass maps.

A. Weak gravitational lensing

When light from galaxies passes through a foreground mass
distribution, the resulting bending of light leads to the galaxy
images being distorted [e.g. 1]. This phenomenon is called
gravitational lensing. The local mapping between the source
(�) and image (✓) plane coordinates (aside from an overall
displacement) can be described by the lens equation:

���0 = A(✓)(✓�✓0), (1)

where �0 and ✓0 is the reference point in the source and the
image plane. A is the Jacobian of this mapping, given by

A(✓) = (1�k)

✓
1�g1 �g2
�g2 1+g1

◆
, (2)

where k is the convergence, gi = gi/(1 � k) is the reduced
shear and gi is the shear. i = 1,2 refers to the 2D coordinates
in the plane. The factor (1 � k) causes galaxy images to be
dilated or reduced in size, while the terms in the matrix cause
distortion in the image shapes. Under the Born approxima-
tion, which assumes that the deflection of the light rays due to
the lensing effect is small, A is given by [e.g. 1]

Ai j(✓,r) = di j �y,i j, (3)

where y is the lensing deflection potential, or a weighted pro-
jection of the gravitational potential along the line of sight.
For a spatially flat Universe, it is given by the line of sight
integral of the 3D gravitational potential F [40],

y (✓,r) = 2
Z r

0
dr0 r � r0

rr0 F
�
✓,r0�, (4)

where r is the comoving distance. Comparison of Eq. (3) with
Eq. (2) gives

k =
1
2

—2y; (5)

� = g1 + ig2 =
1
2

(y,11 �y,22)+ iy,12. (6)

For the purpose of this paper, we use the Limber approxima-
tion which lets us use the Poisson equation for the density
fluctuation d = (D� D̄)/D̄ (where D and D̄ are the 3D density
and mean density respectively):

—2F =
3H2

0 Wm

2a
d , (7)

where a is the cosmological scale factor. Eq. (4) and Eq. (5)
give the convergence measured at a sky coordinate q from
sources at comoving distance r:

k(✓,r) =
3H2

0 Wm

2

Z r

0
dr0 r0(r � r0)

r
d (✓,r0)

a(r0)
. (8)

We can generalize to sources with a distribution in comoving
distance (or redshift) f (r) as: k(✓) =

R
k(✓,r) f (r)dr. That

is, a k map constructed over a region on the sky gives us the
integrated mass density fluctuation in the foreground of the k
map weighted by the lensing weight p(r0), which is itself an
integral over f (r):

k(✓) =
3H2

0 Wm

2

Z r

0
dr0 p(r0)r0 d (✓,r0)

a(r0)
, (9)

with

p(r0) =
Z rH

r0
dr f (r)

r � r0

r
, (10)

where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of k .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33]. In the non-linear regime (scales cor-
responding to clusters or smaller structures) improved meth-
ods have been developed to recover the mass distribution [e.g.
42, 43]. In this paper we are interested in the mass distribution
on large scales; we can therefore restrict ourselves to the KS
method. The KS method works as follows. The Fourier trans-
form of the observed shear, �̂, relates to the Fourier transform
of the convergence, k̂ through

k̂` = D⇤
`�̂`, (11)

D` =
`2

1 � `2
2 +2i`1`2

|`|2 , (12)

where `i are the Fourier counterparts for the angular coordi-
nates qi, i = 1,2 represent the two dimensions of sky coor-
dinate. The above equations hold true for ` 6= 0. In practice
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tions from simulations. In Sec. VII we estimate the level of
contamination by systematics in our results from a wide range
of sources. Finally, we conclude in Sec. VIII. For a summary
of the main results from this work, see the companion paper
in PRL [39].

II. METHODOLOGY

In this section we first briefly review the principles of weak
lensing in Sec. II A. Then, we describe the adopted mass re-
construction method in Sec. II B. Finally in Sec. II C, we de-
scribe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in
this work to help confirm the signal measured in the weak
lensing mass maps.

A. Weak gravitational lensing

When light from galaxies passes through a foreground mass
distribution, the resulting bending of light leads to the galaxy
images being distorted [e.g. 1]. This phenomenon is called
gravitational lensing. The local mapping between the source
(�) and image (✓) plane coordinates (aside from an overall
displacement) can be described by the lens equation:

���0 = A(✓)(✓�✓0), (1)

where �0 and ✓0 is the reference point in the source and the
image plane. A is the Jacobian of this mapping, given by

A(✓) = (1�k)

✓
1�g1 �g2
�g2 1+g1

◆
, (2)

where k is the convergence, gi = gi/(1 � k) is the reduced
shear and gi is the shear. i = 1,2 refers to the 2D coordinates
in the plane. The factor (1 � k) causes galaxy images to be
dilated or reduced in size, while the terms in the matrix cause
distortion in the image shapes. Under the Born approxima-
tion, which assumes that the deflection of the light rays due to
the lensing effect is small, A is given by [e.g. 1]

Ai j(✓,r) = di j �y,i j, (3)

where y is the lensing deflection potential, or a weighted pro-
jection of the gravitational potential along the line of sight.
For a spatially flat Universe, it is given by the line of sight
integral of the 3D gravitational potential F [40],

y (✓,r) = 2
Z r

0
dr0 r � r0

rr0 F
�
✓,r0�, (4)

where r is the comoving distance. Comparison of Eq. (3) with
Eq. (2) gives

k =
1
2

—2y; (5)

a = —y; (6)

� = g1 + ig2 =
1
2

(y,11 �y,22)+ iy,12. (7)

For the purpose of this paper, we use the Limber approxima-
tion which lets us use the Poisson equation for the density
fluctuation d = (D� D̄)/D̄ (where D and D̄ are the 3D density
and mean density respectively):

—2F =
3H2

0 Wm

2a
d , (8)

where a is the cosmological scale factor. Eq. (4) and Eq. (5)
give the convergence measured at a sky coordinate q from
sources at comoving distance r:

k(✓,r) =
3H2

0 Wm

2

Z r

0
dr0 r0(r � r0)

r
d (✓,r0)

a(r0)
. (9)

We can generalize to sources with a distribution in comoving
distance (or redshift) f (r) as: k(✓) =

R
k(✓,r) f (r)dr. That

is, a k map constructed over a region on the sky gives us the
integrated mass density fluctuation in the foreground of the k
map weighted by the lensing weight p(r0), which is itself an
integral over f (r):

k(✓) =
3H2

0 Wm

2

Z r

0
dr0 p(r0)r0 d (✓,r0)

a(r0)
, (10)

with

p(r0) =
Z rH

r0
dr f (r)

r � r0

r
, (11)

where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of k .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33]. In the non-linear regime (scales cor-
responding to clusters or smaller structures) improved meth-
ods have been developed to recover the mass distribution [e.g.
42, 43]. In this paper we are interested in the mass distribution
on large scales; we can therefore restrict ourselves to the KS
method. The KS method works as follows. The Fourier trans-
form of the observed shear, �̂, relates to the Fourier transform
of the convergence, k̂ through

k̂` = D⇤
`�̂`, (12)

D` =
`2

1 � `2
2 +2i`1`2

|`|2 , (13)

where `i are the Fourier counterparts for the angular coordi-
nates qi, i = 1,2 represent the two dimensions of sky coor-
dinate. The above equations hold true for ` 6= 0. In practice
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tions from simulations. In Sec. VII we estimate the level of
contamination by systematics in our results from a wide range
of sources. Finally, we conclude in Sec. VIII. For a summary
of the main results from this work, see the companion paper
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lensing in Sec. II A. Then, we describe the adopted mass re-
construction method in Sec. II B. Finally in Sec. II C, we de-
scribe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in
this work to help confirm the signal measured in the weak
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A. Weak gravitational lensing

When light from galaxies passes through a foreground mass
distribution, the resulting bending of light leads to the galaxy
images being distorted [e.g. 1]. This phenomenon is called
gravitational lensing. The local mapping between the source
(�) and image (✓) plane coordinates (aside from an overall
displacement) can be described by the lens equation:

���0 = A(✓)(✓�✓0), (1)

where �0 and ✓0 is the reference point in the source and the
image plane. A is the Jacobian of this mapping, given by

A(✓) = (1�k)

✓
1�g1 �g2
�g2 1+g1

◆
, (2)

where k is the convergence, gi = gi/(1 � k) is the reduced
shear and gi is the shear. i = 1,2 refers to the 2D coordinates
in the plane. The factor (1 � k) causes galaxy images to be
dilated or reduced in size, while the terms in the matrix cause
distortion in the image shapes. Under the Born approxima-
tion, which assumes that the deflection of the light rays due to
the lensing effect is small, A is given by [e.g. 1]

Ai j(✓,r) = di j �y,i j, (3)

where y is the lensing deflection potential, or a weighted pro-
jection of the gravitational potential along the line of sight.
For a spatially flat Universe, it is given by the line of sight
integral of the 3D gravitational potential F [40],

y (✓,r) = 2
Z r

0
dr0 r � r0

rr0 F
�
✓,r0�, (4)

where r is the comoving distance. Comparison of Eq. (3) with
Eq. (2) gives

k =
1
2

—2y =
1
2

(y,11 +y,22) ; (5)

� = g1 + ig2 =
1
2

(y,11 �y,22)+ iy,12. (6)

For the purpose of this paper, we use the Limber approxima-
tion which lets us use the Poisson equation for the density
fluctuation d = (D� D̄)/D̄ (where D and D̄ are the 3D density
and mean density respectively):

—2F =
3H2

0 Wm

2a
d , (7)

where a is the cosmological scale factor. Eq. (4) and Eq. (5)
give the convergence measured at a sky coordinate q from
sources at comoving distance r:

k(✓,r) =
3H2

0 Wm

2

Z r

0
dr0 r0(r � r0)

r
d (✓,r0)

a(r0)
. (8)

We can generalize to sources with a distribution in comoving
distance (or redshift) f (r) as: k(✓) =

R
k(✓,r) f (r)dr. That

is, a k map constructed over a region on the sky gives us the
integrated mass density fluctuation in the foreground of the k
map weighted by the lensing weight p(r0), which is itself an
integral over f (r):

k(✓) =
3H2

0 Wm

2

Z r

0
dr0 p(r0)r0 d (✓,r0)

a(r0)
, (9)

with

p(r0) =
Z rH

r0
dr f (r)

r � r0

r
, (10)

where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of k .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33]. In the non-linear regime (scales cor-
responding to clusters or smaller structures) improved meth-
ods have been developed to recover the mass distribution [e.g.
42, 43]. In this paper we are interested in the mass distribution
on large scales; we can therefore restrict ourselves to the KS
method. The KS method works as follows. The Fourier trans-
form of the observed shear, �̂, relates to the Fourier transform
of the convergence, k̂ through

k̂` = D⇤
`�̂`, (11)

D` =
`2

1 � `2
2 +2i`1`2

|`|2 , (12)

where `i are the Fourier counterparts for the angular coordi-
nates qi, i = 1,2 represent the two dimensions of sky coor-
dinate. The above equations hold true for ` 6= 0. In practice
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and clusters of galaxies. We also study the effect of various possi-
ble systematics in the data and quantify them based on correlation
analysis. We extend our analysis to identify large scale features in
the mass map which will be used for future studies.

This paper is organised as follows: In §2 we describe the theo-
retical foundation and methodology for constructing the mass maps
and galaxy density maps used in this paper. We then describe the
DES dataset we use in this work in §3, together with the simula-
tion used to interpret our results. In §4 we present the reconstructed
mass maps and discuss qualitatively the correlation of these maps
with foreground structure. In §5, we carry out a quantify the wide-
field mass-to-light correlation on different spatial scales using the
full 140 deg2 field. We show that our results are consistent with ex-
pectation from simulations. In §6 we estimate the level of contam-
ination by systematics in our results from a wide range of sources.
Finally, we conclude in §8.

2 METHODOLOGY

In this section we first briefly review the principles of weak lens-
ing in section 2.1. Then, we describe the background theory of our
mass reconstruction method in section 2.2. Finally in section 2.3,
we describe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in this
work to help confirm the signal measured in the weak lensing mass
maps.

2.1 Weak gravitational lensing

When light from galaxies passes through a foreground mass dis-
tribution, the resulting bending of light leads to the galaxy im-
ages being distorted (e.g. Bartelmann & Schneider 2001). This phe-
nomenon is called gravitational lensing. The mapping between the
source (b ) and lens (q ) plane coordinates can be described by the
lens equation:

b = A(q)q (1)

where A is the Jacobian of this mapping and is given by

A(q) = (1�k)
✓

1�µ1 �µ2
�µ2 1+µ1

◆
(2)

where k is the convergence, µi =
gi

1�k and gi is the shear. The pre-
multiplying factor (1� k) causes galaxy images to be dilated or
reduced in size, while the terms in the matrix cause distortion in
the image shapes.

Recall that the Friedmann-Robertson-Walker (FRW) metric
for a weakly perturbed Universe is given by

ds2 =

✓
1+

2F
c2

◆
dt2 �a(t)2

✓
1� 2F

c2

◆h
dr2 + r2dW2

i
(3)

where r is the comoving distance and F is the Newtonian poten-
tial. Under the Born approximation, we find that A is given by (e.g.
Bartelmann & Schneider 2001)

Ai j(q ,r) = di j �y,i j (4)

where the lensing deflection potential y,i j , or the projected gravi-
tational potential along the line of sight, for a flat Universe is

y (q ,r) = 2
c2

Z r

0
dr0

r
rr0

F
�
q ,r0

�
(5)

Comparison of Eqn. 4 with Eqn. 2 shows that

k =
1
2

—2y (6)

g = g1 + ig2 =
1
2
�
y,11 �y,22

�
+ iy,12 (7)

The Poisson equation for a density fluctuation d = D�D̄
D̄ is given by

—2F =
3H2

0 Wm

2a
d (8)

where D and D̄ are the density and average density when the Uni-
verse has a scale factor a. Using Eqn. 5 and Eqn. 6, we find that the
convergence measured at a sky coordinate q on sources at comov-
ing distance r can be written as

k(q ,r) =
3H2

0 Wm

2c2

Z r

0
dr0

(r� r0)r0

r
d (q ,r0)

a(r0)
(9)

Convergence for sources with a redshift distribution f (r) can be
written as

k(q) =
Z

k(q ,r) f (r)dr (10)

Using the Limber approximation, the angular power spectrum of
convergence can be written as

Ck (l) =
9H4

0 W2
m

4c4

Z
dr

p2(r)
a2(r)

Pd (l/r,r) (11)

where Pd (l/r,r) is the three dimensional matter power spectrum
and p(r) is the lensing efficiency defined

p(r) =
Z

dr0 f (r0)
r0 � r

r
. (12)

2.2 Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction based
on the method developed in Kaiser & Squires (1993). The Kaiser-
Squires (KS) method is known to work well up to a constant factor
as long as the structures are in the linear regime (Van Waerbeke
et al. 2013), i.e. scales larger than clusters. In the non-linear regime
(scales corresponding to clusters or smaller structures) improved
methods have been developed to recover the mass distribution (e.g.
Bartelmann et al. 1996; Bridle et al. 1998). In this paper we are in-
terested in the connection between mass and light on large scales;
we have therefore found that the KS method is suitable for our pur-
pose. The principle of the KS method is described below.

The Fourier transform of the observed shear, ĝ , relates to the
Fourier transform of the convergence, k̂ through

k̂(l)�k0 = D⇤(l)ĝ(l) (13)

where li = 2p
qi

, i = 1,2, are the Fourier counterpart for the angular
position qi, and k0 is the average projected mass (i.e. k for l = 0).
D(l) is defined as

D(l) =
l2
1 � l2

2 +2il1l2
|l|2

. (14)

The inverse Fourier transform of Eqn. 13 gives the convergence
for the observed field in real space. Ideally, the imaginary part of
the inverse Fourier transform will be zero as the convergence is a
real quantity. However, noise, systematics and masking can intro-
duce imaginary convergence as we will see later. In this paper we
will refer to the the real and imaginary parts of the reconstructed
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tions from simulations. In Sec. VII we estimate the level of
contamination by systematics in our results from a wide range
of sources. Finally, we conclude in Sec. VIII. For a summary
of the main results from this work, see the companion paper
in PRL [39].

II. METHODOLOGY

In this section we first briefly review the principles of weak
lensing in Sec. II A. Then, we describe the adopted mass re-
construction method in Sec. II B. Finally in Sec. II C, we de-
scribe our method of generating galaxy density maps. The
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where k is the convergence, gi = gi/(1 � k) is the reduced
shear and gi is the shear. i = 1,2 refers to the 2D coordinates
in the plane. The factor (1 � k) causes galaxy images to be
dilated or reduced in size, while the terms in the matrix cause
distortion in the image shapes. Under the Born approxima-
tion, which assumes that the deflection of the light rays due to
the lensing effect is small, A is given by [e.g. 1]
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where y is the lensing deflection potential, or a weighted pro-
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where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
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B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
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dinate. The above equations hold true for ` 6= 0. In practice
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and clusters of galaxies. We also study the effect of various possi-
ble systematics in the data and quantify them based on correlation
analysis. We extend our analysis to identify large scale features in
the mass map which will be used for future studies.

This paper is organised as follows: In §2 we describe the theo-
retical foundation and methodology for constructing the mass maps
and galaxy density maps used in this paper. We then describe the
DES dataset we use in this work in §3, together with the simula-
tion used to interpret our results. In §4 we present the reconstructed
mass maps and discuss qualitatively the correlation of these maps
with foreground structure. In §5, we carry out a quantify the wide-
field mass-to-light correlation on different spatial scales using the
full 140 deg2 field. We show that our results are consistent with ex-
pectation from simulations. In §6 we estimate the level of contam-
ination by systematics in our results from a wide range of sources.
Finally, we conclude in §8.

2 METHODOLOGY

In this section we first briefly review the principles of weak lens-
ing in section 2.1. Then, we describe the background theory of our
mass reconstruction method in section 2.2. Finally in section 2.3,
we describe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in this
work to help confirm the signal measured in the weak lensing mass
maps.

2.1 Weak gravitational lensing

When light from galaxies passes through a foreground mass dis-
tribution, the resulting bending of light leads to the galaxy im-
ages being distorted (e.g. Bartelmann & Schneider 2001). This phe-
nomenon is called gravitational lensing. The mapping between the
source (b ) and lens (q ) plane coordinates can be described by the
lens equation:

b = A(q)q (1)

where A is the Jacobian of this mapping and is given by

A(q) = (1�k)
✓

1�µ1 �µ2
�µ2 1+µ1

◆
(2)

where k is the convergence, µi =
gi

1�k and gi is the shear. The pre-
multiplying factor (1� k) causes galaxy images to be dilated or
reduced in size, while the terms in the matrix cause distortion in
the image shapes.

Recall that the Friedmann-Robertson-Walker (FRW) metric
for a weakly perturbed Universe is given by

ds2 =

✓
1+

2F
c2

◆
dt2 �a(t)2

✓
1� 2F

c2

◆h
dr2 + r2dW2

i
(3)

where r is the comoving distance and F is the Newtonian poten-
tial. Under the Born approximation, we find that A is given by (e.g.
Bartelmann & Schneider 2001)

Ai j(q ,r) = di j �y,i j (4)

where the lensing deflection potential y,i j , or the projected gravi-
tational potential along the line of sight, for a flat Universe is

y (q ,r) = 2
c2

Z r

0
dr0

r
rr0

F
�
q ,r0

�
(5)

Comparison of Eqn. 4 with Eqn. 2 shows that

k =
1
2

—2y (6)

g = g1 + ig2 =
1
2
�
y,11 �y,22

�
+ iy,12 (7)

The Poisson equation for a density fluctuation d = D�D̄
D̄ is given by

—2F =
3H2

0 Wm

2a
d (8)

where D and D̄ are the density and average density when the Uni-
verse has a scale factor a. Using Eqn. 5 and Eqn. 6, we find that the
convergence measured at a sky coordinate q on sources at comov-
ing distance r can be written as

k(q ,r) =
3H2

0 Wm

2c2

Z r

0
dr0

(r� r0)r0

r
d (q ,r0)

a(r0)
(9)

Convergence for sources with a redshift distribution f (r) can be
written as

k(q) =
Z

k(q ,r) f (r)dr (10)

Using the Limber approximation, the angular power spectrum of
convergence can be written as

Ck (l) =
9H4

0 W2
m

4c4

Z
dr

p2(r)
a2(r)

Pd (l/r,r) (11)

where Pd (l/r,r) is the three dimensional matter power spectrum
and p(r) is the lensing efficiency defined

p(r) =
Z

dr0 f (r0)
r0 � r

r
. (12)

2.2 Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction based
on the method developed in Kaiser & Squires (1993). The Kaiser-
Squires (KS) method is known to work well up to a constant factor
as long as the structures are in the linear regime (Van Waerbeke
et al. 2013), i.e. scales larger than clusters. In the non-linear regime
(scales corresponding to clusters or smaller structures) improved
methods have been developed to recover the mass distribution (e.g.
Bartelmann et al. 1996; Bridle et al. 1998). In this paper we are in-
terested in the connection between mass and light on large scales;
we have therefore found that the KS method is suitable for our pur-
pose. The principle of the KS method is described below.

The Fourier transform of the observed shear, ĝ , relates to the
Fourier transform of the convergence, k̂ through

k̂(l)�k0 = D⇤(l)ĝ(l) (13)

where li = 2p
qi

, i = 1,2, are the Fourier counterpart for the angular
position qi, and k0 is the average projected mass (i.e. k for l = 0).
D(l) is defined as

D(l) =
l2
1 � l2

2 +2il1l2
|l|2

. (14)

The inverse Fourier transform of Eqn. 13 gives the convergence
for the observed field in real space. Ideally, the imaginary part of
the inverse Fourier transform will be zero as the convergence is a
real quantity. However, noise, systematics and masking can intro-
duce imaginary convergence as we will see later. In this paper we
will refer to the the real and imaginary parts of the reconstructed
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and mean density respectively):

—2F =
3H2
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d , (8)

where a is the cosmological scale factor. Eq. (4) and Eq. (5)
give the convergence measured at a sky coordinate q from
sources at comoving distance r:
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We can generalize to sources with a distribution in comoving
distance (or redshift) f (r) as: k(✓) =

R
k(✓,r) f (r)dr. That

is, a k map constructed over a region on the sky gives us the
integrated mass density fluctuation in the foreground of the k
map weighted by the lensing weight p(r0), which is itself an
integral over f (r):
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where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of k .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33]. In the non-linear regime (scales cor-
responding to clusters or smaller structures) improved meth-
ods have been developed to recover the mass distribution [e.g.
42, 43]. In this paper we are interested in the mass distribution
on large scales; we can therefore restrict ourselves to the KS
method. The KS method works as follows. The Fourier trans-
form of the observed shear, �̂, relates to the Fourier transform
of the convergence, k̂ through
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where `i are the Fourier counterparts for the angular coordi-
nates qi, i = 1,2 represent the two dimensions of sky coor-
dinate. The above equations hold true for ` 6= 0. In practice
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tions from simulations. In Sec. VII we estimate the level of
contamination by systematics in our results from a wide range
of sources. Finally, we conclude in Sec. VIII. For a summary
of the main results from this work, see the companion paper
in PRL [39].
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sources at comoving distance r:

k(✓,r) =
3H2

0 Wm

2

Z r

0
dr0 r0(r � r0)

r
d (✓,r0)

a(r0)
. (8)

We can generalize to sources with a distribution in comoving
distance (or redshift) f (r) as: k(✓) =

R
k(✓,r) f (r)dr. That
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where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of k .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33]. In the non-linear regime (scales cor-
responding to clusters or smaller structures) improved meth-
ods have been developed to recover the mass distribution [e.g.
42, 43]. In this paper we are interested in the mass distribution
on large scales; we can therefore restrict ourselves to the KS
method. The KS method works as follows. The Fourier trans-
form of the observed shear, �̂, relates to the Fourier transform
of the convergence, k̂ through
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IV weak lensing surveys yields a factor of 10 improvement
in the Dark Energy Task Force Figure of Merit (A06).

Most studies to date have been adopting the formulae
and model parameters in A06 to estimate the performance
of future weak lensing surveys. However, the way in which
ne� is quoted is often inconsistent among literature, causing
confusion in the field. The main goal of this paper is to
clearly define both ⇥̂� and ne� , estimate their values for
LSST, and reconcile the various di�erent ne� values in other
literature.

The structure of the paper is as follows: In Section 2,
we first review briefly the weak lensing notation and defini-
tion of ⇥̂� and ne� . We also discuss the relevant information
about the dataset and the analysis pipeline one needs to
have in order to calculate these numbers. We introduce the
input galaxy catalog used in this work in Section 3, and then
step-by-step discuss in Section 4 how the analysis methods
in a multi-epoch weak lensing dataset a�ects the ⇥̂� and ne�

values using simulations. We compare our numbers with pre-
vious literature in Section 6 and summarize in Section 7.

2 OVERVIEW OF THE PROBLEM

2.1 Weak lensing notation

Throughout the paper, we measure object shapes using the
2-component ellipticity spinor:

" = ⌅1 + i⌅2 , (1)

where

⌅1 =
I11 � I22

I11 + I22 + 2
⇤

I11I22 � I212
,

⌅2 =
2I12

I11 + I22 + 2
⇤

I11I22 � I212
. (2)

The Iij are the normalized moments of the object’s light
intensity profile f(x1, x2), weighted by a Gaussian filter
W (x1, x2) to reduce noise:

Iij =

⇥ ⇥
dx1dx2W (x1, x2)f(x1, x2)xixj⇥ ⇥
dx1dx2W (x1, x2)f(x1, x2)

, i, j = 1, 2 . (3)

The width of W (x1, x2) is chosen to give the maximum
signal-to-noise ratio for each individual object. Under this
definition, ellipticity has the same unit as shear, so that the
measured ellipticity changes according when some shear is
applied (see, e.g. Bartelmann & Schneider 2001):

⌅i =

�
(⌅si + gi)(1 + g⇤i ⌅

s
i )

�1 , |g| 6 1

(1 + gi⌅
s,⇤
i )(⌅s,⇤i + g⇤i )

�1 , |g| > 1
; i = 1, 2 (4)

Another commonly used definition for ellipticity is � = ⇤1+
i⇤2, defined as the following:

⇤1 =
I11 � I22
I11 + I22

, ⇤2 =
2I12

I11 + I22
. (5)

The two definitions can be converted according to

⌅i =
⇤i

1 +
⇤

1� |⇤|2
, ⇤i =

2⌅i
1 + |⌅|2 ; i = 1, 2 (6)

We choose the definition Equation 2 over Equation 5 to avoid
confusion since we frequently need to convert between ellip-
ticity and shear space.

2.2 Relation between ⇥̂� , ⇥SN , ⇥� , n and ne�

As mentioned earlier, the relevant quantity in measuring
the statistical power of a survey is ⇥̂� (given fixed fsky). For
each galaxy, since the shear noise results from the intrinsic
shape noise as well as measurement noise, we can write,
assuming the shape noise and the measurement noise are
both approximately Gaussian,

⇥2
�,i = ⇥2

SN + ⇥2
m,i. (7)

The subscript i indicates this is the shear noise for the ith
galaxy and the subscript m means measurement noise. ⇥X

indicates the RMS of the distribution of quantity X. Note
that measurement noise depends on galaxy shape and size
and brightness and is thus di�erent between galaxies, while
the shape noise is usually taken to be constant for the whole
galaxy sample [IF we can reconcile this from the sims
and COSMOS data...].

The shear noise density can be derived from the shear
noise in individual galaxies. If we assume the mean shear in a
unit area �̂ is calculated by the weighted mean of the shear,
where the weight is just the shear noise for each galaxy, then
we have:

�̂ =
�n

i
�i

⇥�,i

�n
i

1
⇥�,i

, (8)

⇥̂2
� = (⇥�̂)

2 =
1

�n
i

1
⇥2
�,i

=
⇥2
SN

ne�
. (9)

The last part of Equation 9 is the operational definition of
ne� . Rearranging the terms and inserting Equation 7 leads
to the following relation:

ne� = �n
i
⇥2
SN

⇥2
�,i

= �n
i

⇥2
SN

⇥2
SN + ⇥2

m,i

(10)

2.3 Practical considerations in calculating ⇥̂�

Calculating ⇥̂� is really a combination of di�erent layers of
problems. First, we need an estimate of the intrinsic distri-
bution of galaxies in the multi-dimensional space (e.g. size,
magnitude, redshift, shape etc.), given LSST-depth dataset
and potential cuts on the sample as a result of the catalogue
preparation process. Second, we need to understand the ex-
pected shear measurement error for each galaxy, which de-
pends on the characteristics of the galaxy, the measurement
algorithm, and how information in multiple measurements of
the same galaxy are combined. We address the first problem
in Section 3 and the second in Section 4.

It is important to realize now that even for the same
dataset, it is possible to get di�erent ⇥̂� and ne� values de-
pending on the di�erent caveats one places on the analysis
pipeline. Thus one needs to be careful when quoting or com-
paring these numbers, to also give enough information on the
assumptions one has adapted.

3 THE INTRINSIC GALAXY DISTRIBUTION

To start, we need a realistic galaxy catalog that contains the
major characteristics (redshift, size, magnitude and shape)
of the galaxies expected to be seen in a 10-year LSST
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IV weak lensing surveys yields a factor of 10 improvement
in the Dark Energy Task Force Figure of Merit (A06).

Most studies to date have been adopting the formulae
and model parameters in A06 to estimate the performance
of future weak lensing surveys. However, the way in which
ne� is quoted is often inconsistent among literature, causing
confusion in the field. The main goal of this paper is to
clearly define both ⇥̂� and ne� , estimate their values for
LSST, and reconcile the various di�erent ne� values in other
literature.

The structure of the paper is as follows: In Section 2,
we first review briefly the weak lensing notation and defini-
tion of ⇥̂� and ne� . We also discuss the relevant information
about the dataset and the analysis pipeline one needs to
have in order to calculate these numbers. We introduce the
input galaxy catalog used in this work in Section 3, and then
step-by-step discuss in Section 4 how the analysis methods
in a multi-epoch weak lensing dataset a�ects the ⇥̂� and ne�

values using simulations. We compare our numbers with pre-
vious literature in Section 6 and summarize in Section 7.

2 OVERVIEW OF THE PROBLEM

2.1 Weak lensing notation

Throughout the paper, we measure object shapes using the
2-component ellipticity spinor:

" = ⌅1 + i⌅2 , (1)

where

⌅1 =
I11 � I22

I11 + I22 + 2
⇤

I11I22 � I212
,

⌅2 =
2I12

I11 + I22 + 2
⇤

I11I22 � I212
. (2)

The Iij are the normalized moments of the object’s light
intensity profile f(x1, x2), weighted by a Gaussian filter
W (x1, x2) to reduce noise:

Iij =

⇥ ⇥
dx1dx2W (x1, x2)f(x1, x2)xixj⇥ ⇥
dx1dx2W (x1, x2)f(x1, x2)

, i, j = 1, 2 . (3)

The width of W (x1, x2) is chosen to give the maximum
signal-to-noise ratio for each individual object. Under this
definition, ellipticity has the same unit as shear, so that the
measured ellipticity changes according when some shear is
applied (see, e.g. Bartelmann & Schneider 2001):

⌅i =

�
(⌅si + gi)(1 + g⇤i ⌅

s
i )

�1 , |g| 6 1

(1 + gi⌅
s,⇤
i )(⌅s,⇤i + g⇤i )

�1 , |g| > 1
; i = 1, 2 (4)

Another commonly used definition for ellipticity is � = ⇤1+
i⇤2, defined as the following:

⇤1 =
I11 � I22
I11 + I22

, ⇤2 =
2I12

I11 + I22
. (5)

The two definitions can be converted according to

⌅i =
⇤i

1 +
⇤

1� |⇤|2
, ⇤i =

2⌅i
1 + |⌅|2 ; i = 1, 2 (6)

We choose the definition Equation 2 over Equation 5 to avoid
confusion since we frequently need to convert between ellip-
ticity and shear space.

2.2 Relation between ⇥̂� , ⇥SN , ⇥� , n and ne�

As mentioned earlier, the relevant quantity in measuring
the statistical power of a survey is ⇥̂� (given fixed fsky). For
each galaxy, since the shear noise results from the intrinsic
shape noise as well as measurement noise, we can write,
assuming the shape noise and the measurement noise are
both approximately Gaussian,

⇥2
�,i = ⇥2

SN + ⇥2
m,i. (7)

The subscript i indicates this is the shear noise for the ith
galaxy and the subscript m means measurement noise. ⇥X

indicates the RMS of the distribution of quantity X. Note
that measurement noise depends on galaxy shape and size
and brightness and is thus di�erent between galaxies, while
the shape noise is usually taken to be constant for the whole
galaxy sample [IF we can reconcile this from the sims
and COSMOS data...].

The shear noise density can be derived from the shear
noise in individual galaxies. If we assume the mean shear in a
unit area �̂ is calculated by the weighted mean of the shear,
where the weight is just the shear noise for each galaxy, then
we have:

�̂ =
�n

i
�i

⇥�,i

�n
i

1
⇥�,i

, (8)

⇥̂2
� = (⇥�̂)

2 =
1

�n
i

1
⇥2
�,i

=
⇥2
SN

ne�
. (9)

The last part of Equation 9 is the operational definition of
ne� . Rearranging the terms and inserting Equation 7 leads
to the following relation:

ne� = �n
i
⇥2
SN

⇥2
�,i

= �n
i

⇥2
SN

⇥2
SN + ⇥2

m,i

(10)

2.3 Practical considerations in calculating ⇥̂�

Calculating ⇥̂� is really a combination of di�erent layers of
problems. First, we need an estimate of the intrinsic distri-
bution of galaxies in the multi-dimensional space (e.g. size,
magnitude, redshift, shape etc.), given LSST-depth dataset
and potential cuts on the sample as a result of the catalogue
preparation process. Second, we need to understand the ex-
pected shear measurement error for each galaxy, which de-
pends on the characteristics of the galaxy, the measurement
algorithm, and how information in multiple measurements of
the same galaxy are combined. We address the first problem
in Section 3 and the second in Section 4.

It is important to realize now that even for the same
dataset, it is possible to get di�erent ⇥̂� and ne� values de-
pending on the di�erent caveats one places on the analysis
pipeline. Thus one needs to be careful when quoting or com-
paring these numbers, to also give enough information on the
assumptions one has adapted.

3 THE INTRINSIC GALAXY DISTRIBUTION

To start, we need a realistic galaxy catalog that contains the
major characteristics (redshift, size, magnitude and shape)
of the galaxies expected to be seen in a 10-year LSST
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IV weak lensing surveys yields a factor of 10 improvement
in the Dark Energy Task Force Figure of Merit (A06).

Most studies to date have been adopting the formulae
and model parameters in A06 to estimate the performance
of future weak lensing surveys. However, the way in which
ne� is quoted is often inconsistent among literature, causing
confusion in the field. The main goal of this paper is to
clearly define both ⇥̂� and ne� , estimate their values for
LSST, and reconcile the various di�erent ne� values in other
literature.

The structure of the paper is as follows: In Section 2,
we first review briefly the weak lensing notation and defini-
tion of ⇥̂� and ne� . We also discuss the relevant information
about the dataset and the analysis pipeline one needs to
have in order to calculate these numbers. We introduce the
input galaxy catalog used in this work in Section 3, and then
step-by-step discuss in Section 4 how the analysis methods
in a multi-epoch weak lensing dataset a�ects the ⇥̂� and ne�

values using simulations. We compare our numbers with pre-
vious literature in Section 6 and summarize in Section 7.

2 OVERVIEW OF THE PROBLEM

2.1 Weak lensing notation

Throughout the paper, we measure object shapes using the
2-component ellipticity spinor:

" = ⌅1 + i⌅2 , (1)

where

⌅1 =
I11 � I22

I11 + I22 + 2
⇤

I11I22 � I212
,

⌅2 =
2I12

I11 + I22 + 2
⇤
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. (2)

The Iij are the normalized moments of the object’s light
intensity profile f(x1, x2), weighted by a Gaussian filter
W (x1, x2) to reduce noise:

Iij =
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dx1dx2W (x1, x2)f(x1, x2)xixj⇥ ⇥
dx1dx2W (x1, x2)f(x1, x2)

, i, j = 1, 2 . (3)

The width of W (x1, x2) is chosen to give the maximum
signal-to-noise ratio for each individual object. Under this
definition, ellipticity has the same unit as shear, so that the
measured ellipticity changes according when some shear is
applied (see, e.g. Bartelmann & Schneider 2001):

⌅i =

�
(⌅si + gi)(1 + g⇤i ⌅

s
i )

�1 , |g| 6 1

(1 + gi⌅
s,⇤
i )(⌅s,⇤i + g⇤i )

�1 , |g| > 1
; i = 1, 2 (4)

Another commonly used definition for ellipticity is � = ⇤1+
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We choose the definition Equation 2 over Equation 5 to avoid
confusion since we frequently need to convert between ellip-
ticity and shear space.

2.2 Relation between ⇥̂� , ⇥SN , ⇥� , n and ne�

As mentioned earlier, the relevant quantity in measuring
the statistical power of a survey is ⇥̂� (given fixed fsky). For
each galaxy, since the shear noise results from the intrinsic
shape noise as well as measurement noise, we can write,
assuming the shape noise and the measurement noise are
both approximately Gaussian,

⇥2
�,i = ⇥2

SN + ⇥2
m,i. (7)

The subscript i indicates this is the shear noise for the ith
galaxy and the subscript m means measurement noise. ⇥X

indicates the RMS of the distribution of quantity X. Note
that measurement noise depends on galaxy shape and size
and brightness and is thus di�erent between galaxies, while
the shape noise is usually taken to be constant for the whole
galaxy sample [IF we can reconcile this from the sims
and COSMOS data...].

The shear noise density can be derived from the shear
noise in individual galaxies. If we assume the mean shear in a
unit area �̂ is calculated by the weighted mean of the shear,
where the weight is just the shear noise for each galaxy, then
we have:
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ne� . Rearranging the terms and inserting Equation 7 leads
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2.3 Practical considerations in calculating ⇥̂�

Calculating ⇥̂� is really a combination of di�erent layers of
problems. First, we need an estimate of the intrinsic distri-
bution of galaxies in the multi-dimensional space (e.g. size,
magnitude, redshift, shape etc.), given LSST-depth dataset
and potential cuts on the sample as a result of the catalogue
preparation process. Second, we need to understand the ex-
pected shear measurement error for each galaxy, which de-
pends on the characteristics of the galaxy, the measurement
algorithm, and how information in multiple measurements of
the same galaxy are combined. We address the first problem
in Section 3 and the second in Section 4.

It is important to realize now that even for the same
dataset, it is possible to get di�erent ⇥̂� and ne� values de-
pending on the di�erent caveats one places on the analysis
pipeline. Thus one needs to be careful when quoting or com-
paring these numbers, to also give enough information on the
assumptions one has adapted.

3 THE INTRINSIC GALAXY DISTRIBUTION

To start, we need a realistic galaxy catalog that contains the
major characteristics (redshift, size, magnitude and shape)
of the galaxies expected to be seen in a 10-year LSST
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Fig. 4.— Astrometric residuals in the x and y directions plotted as a vector field for a particular

DECam device. The input images for the astrometric solution were divided by the dome-flat

images. The median magnitude across the whole chip is 5.65 mas, with an rms of 5.35 mas. Large

residuals can be seen at the positions of the tree rings and the tape bumps (compare the dome

flat images shown in Figure 1). The astrometric model did not contain terms to account for the

edge distortions either, but their imprint on the residuals are partially hidden by the masking of

30 pixels at the edges when calculating the solution.

study-type LSST CCDs PhoSim: Peterson et al. (2015)

Chang et al. (2012)

Plazas et al. (2014)

Chang et al. (2013)



Weak Lensing State-of-the-Art

DES Y3, coming soon, 100 M WL 
galaxies over 5000 sq. degree… 

Zuntz et al. (2017)

• The Dark Energy Survey (DES) 
Y1 data

• 30 M galaxies with accurate 
shape measurements @ m~2%

• Two independent shear 
catalogs

• Metacalibration (Sheldon & 
Huff, 2017): innovative shape 
measurement algorithm
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FIG. 1. (Top panel): Redshift distributions of redMaGiC
lens galaxies divided in tomographic bins (colors) and for
the combination of all of them (black). The n(z)’s are ob-
tained stacking individual Gaussian distributions for each
galaxy. (Bottom panel): The same, but for our two weak
lensing source samples, Metacalibration and im3shape,
using the BPZ photometric redshift code.

defining an effective ⌃�1
crit integrating over the corre-

sponding redshift distributions. For a given lens bin
i and source bin j, this has the following form:

⌃�1 i,j
crit,e↵ =

Z Z
dzldzs n

i
l(zl) n

j
s(zs) ⌃�1

crit(zl, zs). (5)

We need to assume a certain cosmology (flat ⇤CDM
with ⌦m = 0.3) when calculating the angular diameter
distances in ⌃�1

crit. The results presented in this anal-
ysis depend only weakly on this choice of cosmology,
as we will further discuss in the relevant sections (see
Sec. VI).

III. DATA AND SIMULATIONS

The Dark Energy Survey is a photometric survey that
will cover about one quarter of the southern sky (5000
sq. deg.) to a depth of r > 24, imaging about 300
million galaxies in 5 broadband filters (grizY ) up to
redshift z = 1.4 [37, 38]. In this work we use data from
a large contiguous region of 1321 sq. deg. of DES Year 1
observations which overlaps with the South Pole Tele-
scope footprint �60 deg. < � < �40 deg. and reaches a
limiting magnitude of ⇡ 23 in the r-band (with a mean
of 3 exposures out of the planned 10 for the full survey).
Y1 images were taken between 31 Aug 2013 and 9 Feb
2014.

A. Lens sample: redMaGiC

The lens galaxy sample used in this work is a subset
of the DES Y1 Gold Catalog [39] selected by redMaGiC
[29], which is an algorithm designed to define a sample

of luminous red galaxies (LRGs) with minimal photo-z
uncertainties. It selects galaxies above some luminosity
threshold based on how well they fit a red sequence tem-
plate, calibrated using redMaPPer [30, 31] and a sub-
set of galaxies with spectroscopically verified redshifts.
The cutoff in the goodness of fit to the red sequence
is imposed as a function of redshift and adjusted such
that a constant comoving number density of galaxies is
maintained. The redMaGiC photo-z’s show excellent
performance, with a scatter of �z/(1+ z) = 0.0166 [35].
Furthermore, their errors are very well characterized
and approximately Gaussian, enabling the redshift dis-
tribution of a sample, n(z), to be obtained by stacking
each galaxy’s Gaussian redshift probability distribution
function (see [29] for more details).

The sample used in this work is a combination of
three redMaGiC galaxy samples, each of them defined
to be complete down to a given luminosity thresh-
old Lmin. We split the lens sample into five equally-
spaced tomographic redshift bins between z = 0.15 and
z = 0.9, with the three lower redshift bins using the
lowest luminosity threshold of Lmin = 0.5L

? (named
High Density sample) and the two highest redshift bins
using higher luminosity thresholds of Lmin = 1.0L

? and
Lmin = 1.5L

? (named High Luminosity and Higher
Luminosity samples, respectively). Using the stack-
ing procedure mentioned above, redshift distributions
are obtained and shown in Fig. 1. Furthermore, red-
MaGiC samples have been produced with two different
photometric reduction techniques, MAG_AUTO and Multi-
object fitting photometry (MOF), both described in [39].
We follow the analysis of [35] and we use MAG_AUTO pho-
tometry for the three lower redshift bins and MOF pho-
tometry for the rest, as it was found in [35] that this
combination was optimal in minimizing systematic ef-
fects that introduce spurious angular galaxy clustering.

B. Source samples: Metacalibration and
im3shape

Metacalibration [40, 41] is a recently developed
method to accurately measure weak lensing shear using
only the available imaging data, without need for prior
information about galaxy properties or calibration from
simulations. The method involves distorting the image
with a small known shear, and calculating the response
of a shear estimator to that applied shear. This new
technique can be applied to any shear estimation code
provided it fulfills certain requirements. For this work,
it has been applied to the ngmix shear pipeline [42],
which fits a Gaussian model simultaneously in the riz

bands to measure the ellipticities of the galaxies. The
details of this implementation can be found in [43]. We
will refer to the ngmix shear catalog calibrated using
that procedure as Metacalibration.

im3shape is based on the algorithm by [44], modi-
fied according to [45] and [43]. It performs a maximum
likelihood fit using a bulge-or-disk galaxy model to esti-
mate the ellipticity of a galaxy, i.e. it fits de Vaucouleurs
bulge and exponential disk components to galaxy im-
ages in the r band, with shear biases calibrated from
realistic simulations [43, 46].

Prat et al. (2017)

• Photometric redshift (photo-z) 
is an inseparable part of the 
WL story. Recall

• Calibration and validation 
methods for the photo-z’s is 
ongoing a lot of development 
these days 
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Fig. 4. Same as Figure 3, but for the GAMA09H field.
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and clusters of galaxies. We also study the effect of various possi-
ble systematics in the data and quantify them based on correlation
analysis. We extend our analysis to identify large scale features in
the mass map which will be used for future studies.

This paper is organised as follows: In §2 we describe the theo-
retical foundation and methodology for constructing the mass maps
and galaxy density maps used in this paper. We then describe the
DES dataset we use in this work in §3, together with the simula-
tion used to interpret our results. In §4 we present the reconstructed
mass maps and discuss qualitatively the correlation of these maps
with foreground structure. In §5, we carry out a quantify the wide-
field mass-to-light correlation on different spatial scales using the
full 140 deg2 field. We show that our results are consistent with ex-
pectation from simulations. In §6 we estimate the level of contam-
ination by systematics in our results from a wide range of sources.
Finally, we conclude in §8.

2 METHODOLOGY

In this section we first briefly review the principles of weak lens-
ing in section 2.1. Then, we describe the background theory of our
mass reconstruction method in section 2.2. Finally in section 2.3,
we describe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in this
work to help confirm the signal measured in the weak lensing mass
maps.

2.1 Weak gravitational lensing

When light from galaxies passes through a foreground mass dis-
tribution, the resulting bending of light leads to the galaxy im-
ages being distorted (e.g. Bartelmann & Schneider 2001). This phe-
nomenon is called gravitational lensing. The mapping between the
source (b ) and lens (q ) plane coordinates can be described by the
lens equation:

b = A(q)q (1)

where A is the Jacobian of this mapping and is given by

A(q) = (1�k)
✓

1�µ1 �µ2
�µ2 1+µ1

◆
(2)

where k is the convergence, µi =
gi

1�k and gi is the shear. The pre-
multiplying factor (1� k) causes galaxy images to be dilated or
reduced in size, while the terms in the matrix cause distortion in
the image shapes.

Recall that the Friedmann-Robertson-Walker (FRW) metric
for a weakly perturbed Universe is given by

ds2 =

✓
1+

2F
c2

◆
dt2 �a(t)2

✓
1� 2F

c2

◆h
dr2 + r2dW2

i
(3)

where r is the comoving distance and F is the Newtonian poten-
tial. Under the Born approximation, we find that A is given by (e.g.
Bartelmann & Schneider 2001)

Ai j(q ,r) = di j �y,i j (4)

where the lensing deflection potential y,i j , or the projected gravi-
tational potential along the line of sight, for a flat Universe is

y (q ,r) = 2
c2

Z r

0
dr0

r
rr0

F
�
q ,r0

�
(5)

Comparison of Eqn. 4 with Eqn. 2 shows that

k =
1
2

—2y (6)

g = g1 + ig2 =
1
2
�
y,11 �y,22

�
+ iy,12 (7)

The Poisson equation for a density fluctuation d = D�D̄
D̄ is given by

—2F =
3H2

0 Wm

2a
d (8)

where D and D̄ are the density and average density when the Uni-
verse has a scale factor a. Using Eqn. 5 and Eqn. 6, we find that the
convergence measured at a sky coordinate q on sources at comov-
ing distance r can be written as

k(q ,r) =
3H2

0 Wm

2c2

Z r

0
dr0

(r� r0)r0

r
d (q ,r0)

a(r0)
(9)

Convergence for sources with a redshift distribution f (r) can be
written as

k(q) =
Z

k(q ,r) f (r)dr (10)

Using the Limber approximation, the angular power spectrum of
convergence can be written as

Ck (l) =
9H4

0 W2
m

4c4

Z
dr

p2(r)
a2(r)

Pd (l/r,r) (11)

where Pd (l/r,r) is the three dimensional matter power spectrum
and p(r) is the lensing efficiency defined

p(r) =
Z

dr0 f (r0)
r0 � r

r
. (12)

2.2 Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction based
on the method developed in Kaiser & Squires (1993). The Kaiser-
Squires (KS) method is known to work well up to a constant factor
as long as the structures are in the linear regime (Van Waerbeke
et al. 2013), i.e. scales larger than clusters. In the non-linear regime
(scales corresponding to clusters or smaller structures) improved
methods have been developed to recover the mass distribution (e.g.
Bartelmann et al. 1996; Bridle et al. 1998). In this paper we are in-
terested in the connection between mass and light on large scales;
we have therefore found that the KS method is suitable for our pur-
pose. The principle of the KS method is described below.

The Fourier transform of the observed shear, ĝ , relates to the
Fourier transform of the convergence, k̂ through

k̂(l)�k0 = D⇤(l)ĝ(l) (13)

where li = 2p
qi

, i = 1,2, are the Fourier counterpart for the angular
position qi, and k0 is the average projected mass (i.e. k for l = 0).
D(l) is defined as

D(l) =
l2
1 � l2

2 +2il1l2
|l|2

. (14)

The inverse Fourier transform of Eqn. 13 gives the convergence
for the observed field in real space. Ideally, the imaginary part of
the inverse Fourier transform will be zero as the convergence is a
real quantity. However, noise, systematics and masking can intro-
duce imaginary convergence as we will see later. In this paper we
will refer to the the real and imaginary parts of the reconstructed
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tions from simulations. In Sec. VII we estimate the level of
contamination by systematics in our results from a wide range
of sources. Finally, we conclude in Sec. VIII. For a summary
of the main results from this work, see the companion paper
in PRL [39].

II. METHODOLOGY

In this section we first briefly review the principles of weak
lensing in Sec. II A. Then, we describe the adopted mass re-
construction method in Sec. II B. Finally in Sec. II C, we de-
scribe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in
this work to help confirm the signal measured in the weak
lensing mass maps.

A. Weak gravitational lensing

When light from galaxies passes through a foreground mass
distribution, the resulting bending of light leads to the galaxy
images being distorted [e.g. 1]. This phenomenon is called
gravitational lensing. The local mapping between the source
(�) and image (✓) plane coordinates (aside from an overall
displacement) can be described by the lens equation:

���0 = A(✓)(✓�✓0), (1)

where �0 and ✓0 is the reference point in the source and the
image plane. A is the Jacobian of this mapping, given by

A(✓) = (1�k)

✓
1�g1 �g2
�g2 1+g1

◆
, (2)

where k is the convergence, gi = gi/(1 � k) is the reduced
shear and gi is the shear. i = 1,2 refers to the 2D coordinates
in the plane. The factor (1 � k) causes galaxy images to be
dilated or reduced in size, while the terms in the matrix cause
distortion in the image shapes. Under the Born approxima-
tion, which assumes that the deflection of the light rays due to
the lensing effect is small, A is given by [e.g. 1]

Ai j(✓,r) = di j �y,i j, (3)

where y is the lensing deflection potential, or a weighted pro-
jection of the gravitational potential along the line of sight.
For a spatially flat Universe, it is given by the line of sight
integral of the 3D gravitational potential F [40],

y (✓,r) = 2
Z r

0
dr0 r � r0

rr0 F
�
✓,r0�, (4)

where r is the comoving distance. Comparison of Eq. (3) with
Eq. (2) gives

k =
1
2

—2y; (5)

� = g1 + ig2 =
1
2

(y,11 �y,22)+ iy,12. (6)

For the purpose of this paper, we use the Limber approxima-
tion which lets us use the Poisson equation for the density
fluctuation d = (D� D̄)/D̄ (where D and D̄ are the 3D density
and mean density respectively):

—2F =
3H2

0 Wm

2a
d , (7)

where a is the cosmological scale factor. Eq. (4) and Eq. (5)
give the convergence measured at a sky coordinate q from
sources at comoving distance r:

k(✓,r) =
3H2

0 Wm

2

Z r

0
dr0 r0(r � r0)

r
d (✓,r0)

a(r0)
. (8)

We can generalize to sources with a distribution in comoving
distance (or redshift) f (r) as: k(✓) =

R
k(✓,r) f (r)dr. That

is, a k map constructed over a region on the sky gives us the
integrated mass density fluctuation in the foreground of the k
map weighted by the lensing weight p(r0), which is itself an
integral over f (r):

k(✓) =
3H2

0 Wm

2

Z r

0
dr0 p(r0)r0 d (✓,r0)

a(r0)
, (9)

with

p(r0) =
Z rH

r0
dr f (r)

r � r0

r
, (10)

where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of k .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33]. In the non-linear regime (scales cor-
responding to clusters or smaller structures) improved meth-
ods have been developed to recover the mass distribution [e.g.
42, 43]. In this paper we are interested in the mass distribution
on large scales; we can therefore restrict ourselves to the KS
method. The KS method works as follows. The Fourier trans-
form of the observed shear, �̂, relates to the Fourier transform
of the convergence, k̂ through

k̂` = D⇤
`�̂`, (11)

D` =
`2

1 � `2
2 +2i`1`2

|`|2 , (12)

where `i are the Fourier counterparts for the angular coordi-
nates qi, i = 1,2 represent the two dimensions of sky coor-
dinate. The above equations hold true for ` 6= 0. In practice
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is, a k map constructed over a region on the sky gives us the
integrated mass density fluctuation in the foreground of the k
map weighted by the lensing weight p(r0), which is itself an
integral over f (r):

k(✓) =
3H2

0 Wm

2

Z r

0
dr0 p(r0)r0 d (✓,r0)

a(r0)
, (10)

with

p(r0) =
Z rH

r0
dr f (r)

r � r0

r
, (11)
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distribution of source galaxies, the above equations provide
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based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
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ods have been developed to recover the mass distribution [e.g.
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distribution, the resulting bending of light leads to the galaxy
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where k is the convergence, gi = gi/(1 � k) is the reduced
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in the plane. The factor (1 � k) causes galaxy images to be
dilated or reduced in size, while the terms in the matrix cause
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tion, which assumes that the deflection of the light rays due to
the lensing effect is small, A is given by [e.g. 1]
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fluctuation d = (D� D̄)/D̄ (where D and D̄ are the 3D density
and mean density respectively):
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where a is the cosmological scale factor. Eq. (4) and Eq. (5)
give the convergence measured at a sky coordinate q from
sources at comoving distance r:

k(✓,r) =
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k(✓,r) f (r)dr. That
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based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33]. In the non-linear regime (scales cor-
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ods have been developed to recover the mass distribution [e.g.
42, 43]. In this paper we are interested in the mass distribution
on large scales; we can therefore restrict ourselves to the KS
method. The KS method works as follows. The Fourier trans-
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and clusters of galaxies. We also study the effect of various possi-
ble systematics in the data and quantify them based on correlation
analysis. We extend our analysis to identify large scale features in
the mass map which will be used for future studies.

This paper is organised as follows: In §2 we describe the theo-
retical foundation and methodology for constructing the mass maps
and galaxy density maps used in this paper. We then describe the
DES dataset we use in this work in §3, together with the simula-
tion used to interpret our results. In §4 we present the reconstructed
mass maps and discuss qualitatively the correlation of these maps
with foreground structure. In §5, we carry out a quantify the wide-
field mass-to-light correlation on different spatial scales using the
full 140 deg2 field. We show that our results are consistent with ex-
pectation from simulations. In §6 we estimate the level of contam-
ination by systematics in our results from a wide range of sources.
Finally, we conclude in §8.

2 METHODOLOGY

In this section we first briefly review the principles of weak lens-
ing in section 2.1. Then, we describe the background theory of our
mass reconstruction method in section 2.2. Finally in section 2.3,
we describe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in this
work to help confirm the signal measured in the weak lensing mass
maps.

2.1 Weak gravitational lensing

When light from galaxies passes through a foreground mass dis-
tribution, the resulting bending of light leads to the galaxy im-
ages being distorted (e.g. Bartelmann & Schneider 2001). This phe-
nomenon is called gravitational lensing. The mapping between the
source (b ) and lens (q ) plane coordinates can be described by the
lens equation:

b = A(q)q (1)

where A is the Jacobian of this mapping and is given by

A(q) = (1�k)
✓

1�µ1 �µ2
�µ2 1+µ1

◆
(2)

where k is the convergence, µi =
gi

1�k and gi is the shear. The pre-
multiplying factor (1� k) causes galaxy images to be dilated or
reduced in size, while the terms in the matrix cause distortion in
the image shapes.

Recall that the Friedmann-Robertson-Walker (FRW) metric
for a weakly perturbed Universe is given by

ds2 =

✓
1+

2F
c2

◆
dt2 �a(t)2

✓
1� 2F

c2

◆h
dr2 + r2dW2

i
(3)

where r is the comoving distance and F is the Newtonian poten-
tial. Under the Born approximation, we find that A is given by (e.g.
Bartelmann & Schneider 2001)

Ai j(q ,r) = di j �y,i j (4)

where the lensing deflection potential y,i j , or the projected gravi-
tational potential along the line of sight, for a flat Universe is

y (q ,r) = 2
c2

Z r

0
dr0

r
rr0

F
�
q ,r0

�
(5)

Comparison of Eqn. 4 with Eqn. 2 shows that

k =
1
2

—2y (6)

g = g1 + ig2 =
1
2
�
y,11 �y,22

�
+ iy,12 (7)

The Poisson equation for a density fluctuation d = D�D̄
D̄ is given by

—2F =
3H2

0 Wm

2a
d (8)

where D and D̄ are the density and average density when the Uni-
verse has a scale factor a. Using Eqn. 5 and Eqn. 6, we find that the
convergence measured at a sky coordinate q on sources at comov-
ing distance r can be written as

k(q ,r) =
3H2

0 Wm

2c2

Z r

0
dr0

(r� r0)r0

r
d (q ,r0)

a(r0)
(9)

Convergence for sources with a redshift distribution f (r) can be
written as

k(q) =
Z

k(q ,r) f (r)dr (10)

Using the Limber approximation, the angular power spectrum of
convergence can be written as

Ck (l) =
9H4

0 W2
m

4c4

Z
dr

p2(r)
a2(r)

Pd (l/r,r) (11)

where Pd (l/r,r) is the three dimensional matter power spectrum
and p(r) is the lensing efficiency defined

p(r) =
Z

dr0 f (r0)
r0 � r

r
. (12)

2.2 Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction based
on the method developed in Kaiser & Squires (1993). The Kaiser-
Squires (KS) method is known to work well up to a constant factor
as long as the structures are in the linear regime (Van Waerbeke
et al. 2013), i.e. scales larger than clusters. In the non-linear regime
(scales corresponding to clusters or smaller structures) improved
methods have been developed to recover the mass distribution (e.g.
Bartelmann et al. 1996; Bridle et al. 1998). In this paper we are in-
terested in the connection between mass and light on large scales;
we have therefore found that the KS method is suitable for our pur-
pose. The principle of the KS method is described below.

The Fourier transform of the observed shear, ĝ , relates to the
Fourier transform of the convergence, k̂ through

k̂(l)�k0 = D⇤(l)ĝ(l) (13)

where li = 2p
qi

, i = 1,2, are the Fourier counterpart for the angular
position qi, and k0 is the average projected mass (i.e. k for l = 0).
D(l) is defined as

D(l) =
l2
1 � l2

2 +2il1l2
|l|2

. (14)

The inverse Fourier transform of Eqn. 13 gives the convergence
for the observed field in real space. Ideally, the imaginary part of
the inverse Fourier transform will be zero as the convergence is a
real quantity. However, noise, systematics and masking can intro-
duce imaginary convergence as we will see later. In this paper we
will refer to the the real and imaginary parts of the reconstructed
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tions from simulations. In Sec. VII we estimate the level of
contamination by systematics in our results from a wide range
of sources. Finally, we conclude in Sec. VIII. For a summary
of the main results from this work, see the companion paper
in PRL [39].

II. METHODOLOGY

In this section we first briefly review the principles of weak
lensing in Sec. II A. Then, we describe the adopted mass re-
construction method in Sec. II B. Finally in Sec. II C, we de-
scribe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in
this work to help confirm the signal measured in the weak
lensing mass maps.

A. Weak gravitational lensing

When light from galaxies passes through a foreground mass
distribution, the resulting bending of light leads to the galaxy
images being distorted [e.g. 1]. This phenomenon is called
gravitational lensing. The local mapping between the source
(�) and image (✓) plane coordinates (aside from an overall
displacement) can be described by the lens equation:

���0 = A(✓)(✓�✓0), (1)

where �0 and ✓0 is the reference point in the source and the
image plane. A is the Jacobian of this mapping, given by

A(✓) = (1�k)
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where k is the convergence, gi = gi/(1 � k) is the reduced
shear and gi is the shear. i = 1,2 refers to the 2D coordinates
in the plane. The factor (1 � k) causes galaxy images to be
dilated or reduced in size, while the terms in the matrix cause
distortion in the image shapes. Under the Born approxima-
tion, which assumes that the deflection of the light rays due to
the lensing effect is small, A is given by [e.g. 1]

Ai j(✓,r) = di j �y,i j, (3)

where y is the lensing deflection potential, or a weighted pro-
jection of the gravitational potential along the line of sight.
For a spatially flat Universe, it is given by the line of sight
integral of the 3D gravitational potential F [40],

y (✓,r) = 2
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where r is the comoving distance. Comparison of Eq. (3) with
Eq. (2) gives
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For the purpose of this paper, we use the Limber approxima-
tion which lets us use the Poisson equation for the density
fluctuation d = (D� D̄)/D̄ (where D and D̄ are the 3D density
and mean density respectively):
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where a is the cosmological scale factor. Eq. (4) and Eq. (5)
give the convergence measured at a sky coordinate q from
sources at comoving distance r:
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3H2

0 Wm

2

Z r

0
dr0 r0(r � r0)

r
d (✓,r0)

a(r0)
. (8)

We can generalize to sources with a distribution in comoving
distance (or redshift) f (r) as: k(✓) =

R
k(✓,r) f (r)dr. That

is, a k map constructed over a region on the sky gives us the
integrated mass density fluctuation in the foreground of the k
map weighted by the lensing weight p(r0), which is itself an
integral over f (r):
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with

p(r0) =
Z rH

r0
dr f (r)

r � r0

r
, (10)

where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of k .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33]. In the non-linear regime (scales cor-
responding to clusters or smaller structures) improved meth-
ods have been developed to recover the mass distribution [e.g.
42, 43]. In this paper we are interested in the mass distribution
on large scales; we can therefore restrict ourselves to the KS
method. The KS method works as follows. The Fourier trans-
form of the observed shear, �̂, relates to the Fourier transform
of the convergence, k̂ through

k̂` = D⇤
`�̂`, (11)
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where `i are the Fourier counterparts for the angular coordi-
nates qi, i = 1,2 represent the two dimensions of sky coor-
dinate. The above equations hold true for ` 6= 0. In practice
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The Kaiser-Squires (KS 1993) method:
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Bullet Clusters

Harvy et al. (2015)

Use distance between stars (optical) and mass 
(WL) for 72 systems to infer DM self-interaction 
cross-section

Detection of DM at 7.6 sigma

No evidence for self-interaction DM

Centering is a potential concern for future
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Wide Field Mass Maps

!16

0�+10�+20�+30�+40�+50�+60�+70� +340�+350�

�50�

�40�

�30�

E; 0.2 < z < 1.3

�3

�2

�1

0

1

2

3

S
/N

0�+10�+20�+30�+40�+50�+60�+70� +340�+350�

�50�

�40�

�30�

B; 0.2 < z < 1.3

�3

�2

�1

0

1

2

3

S
/N

SV (2013)



0�+10�+20�+30�+40�+50�+60�+70� +340�+350�

�50�

�40�

�30�

E; 0.2 < z < 1.3

�3

�2

�1

0

1

2

3

S
/N

0�+10�+20�+30�+40�+50�+60�+70� +340�+350�

�50�

�40�

�30�

B; 0.2 < z < 1.3

�3

�2

�1

0

1

2

3

S
/N

Wide Field Mass Maps

!17

Y1 (2014)



Anomalies in WL Mass Maps?!
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Developments in Mass Mapping
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Jeffery et al. (2018)

0.03 0.06
⌦b

0.6

0.75

0.9

1.05

�
8

0.9

0.96

1.02

1.08

n
s

0.64

0.72

0.8

0.88

h
10

0

0.15 0.30 0.45 0.60
⌦m

0.03

0.06

⌦
b

0.60 0.75 0.90 1.05
�8

0.90 0.96 1.02 1.08
ns

0.64 0.72 0.80 0.88
h100

2nd moments, 13 arcmin cut, Y5

3rd moments, 13 arcmin cut, Y5

2nd + 3rd moments, 13 arcmin cut, Y5

0.03 0.06
⌦b

0.6

0.75

0.9

1.05

�
8

0.9

0.96

1.02

1.08

n
s

0.64

0.72

0.8

0.88

h
10

0

0.15 0.30 0.45 0.60
⌦m

0.03

0.06

⌦
b

0.60 0.75 0.90 1.05
�8

0.90 0.96 1.02 1.08
ns

0.64 0.72 0.80 0.88
h100

2nd moments, 13 arcmin cut, Y5

3rd moments, 13 arcmin cut, Y5

2nd + 3rd moments, 13 arcmin cut, Y5

Gatti et al. (in prep)

3rd moments
2nd moments
3+2 moments

Preliminary



Towards the Smallest Halos

Standard CDM predicts dark matter halos should exist down to at least Earth mass. 
Alternative DM models would predict a low mass cutoff. 

We can robustly measure halo mass of ~1010 M⊙; there exist evidence for the 
existence of ~108 M⊙ halos. Pushing to lower mass is important to probing potential 
breakdown of CDM.

Low mass —> hard to measure!

Credit: Bolshoi Simulations!20



Towards the Smallest Halos

The luminosity 
function and the stellar 
to halo mass relation at 
the low mass end 
inform us about Dark 
Matter models as well 
as astrophysics (galaxy 
formation) 

Sifon et al. (2017)
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Galaxy-galaxy Lensing
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✓

“Galaxy-galaxy lensing” measures the average mass profile of halos that 
host the galaxy sample of interest.

The precision of the measurement depends on: 1) number of lens galaxies 
2) number of source galaxies 3) how well we know the redshifts 
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Prediction for Detection

!23

LSST DESC DM White Paper (2019)



Prediction for Detection

!23

LSST DESC DM White Paper (2019)



Prediction for Detection

!23

See also Alexie Leauthaud & Malin Renneby’s talk Tuesday

LSST DESC DM White Paper (2019)



Ultra Diffused Galaxies

• Ultra Diffuse Galaxies (UDGs) are large, faint galaxies, 
often found in galaxy clusters

• The existence and formation of UDGs are not well 
understood. Quantifying the mass and environment 
characteristics of UDGs will help — they could hold a 
lot of Dark Matter

•   

Credit: Carolin Wittmann (WHT)

Credit: Dimitrios Tanoglidis (DES)
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Cluster Profiles
Splashback in simulations

Dashed circle: radius at which 
accreted matter reaches apocenter 
Diemer, Kravtsov; More et al; Adhikari et al 

Rvir
R200m

Rsp

Different Dark Matter model 
predicts different mass 
profiles for massive clusters, 
here we focus on the 
outskirts of galaxy clusters

More, Diemer & Kravstov (2015)
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•Boundary of the 1-stream vs. multi-stream region for infalling particles.

•Probe for assembly bias, dynamical friction, SIDM, modified gravity

•

3

to determine the enclosed overdensity inside the splash-
back radius, ∆s. Our results do not strongly depend on
our assumed mass profile inside the halo. For example,
using an isothermal profile instead of NFW gives results
that are consistent at the∼ 10% level. Figure 2 shows the
predicted values of the enclosed overdensity. Throughout
this paper, we define overdensities relative to the mean
matter density, not the critical density. In our model,
∆s depends only on the halo’s accretion rate s, along
with the values of the background cosmological parame-
ters ΩM and ΩΛ at the time the halo is observed. The
behavior we find is unsurprising. As the accretion rate is
increased (larger s), the potential deepens more quickly
in time, resulting in splashback occuring at a smaller ra-
dius, or equivalently, at a larger enclosed overdensity ∆s.
Similarly, at low redshift when ΩM diminishes and ΩΛ

increases, the mean background density of the universe
ρ̄m decreases more during the time between turnaround
and splashback, again resulting in a larger ∆s.
Finally, although the model presented here is ex-

tremely simple to evaluate, we also provide a very rough
fitting function to approximate the location of splash-
back:

∆s ≈ AΩ−b−c s
M edΩM+e s3/4 , (3)

with fitted parameters A = 38, b = 0.57, c = 0.02, d =
0.2, e = 0.52. This fitting function has ∼ 5% accuracy
over the range 0.5 < s < 4, 0.1 < ΩM < 1. The results
shown in this paper do not use this fitting function, since
it is equally simple to evaluate the spherical toy model.

III. COMPARISON WITH SIMULATIONS

In this section, we compare the predictions of the toy
model described in the previous section with results of
numerical simulations. First, we compare our model with
the similarity solutions that arise from the collapse of
scale-free perturbations [2, 7]. Fig. 3 shows one exam-
ple, for accretion rate s = 3. In all cases, we find good
agreement between the caustic location obtained in the
similarity solution and that predicted by the toy model.
This even holds true for collapse of highly triaxial per-
turbations: the main effect of the triaxiality is to make
the splashback surface nonspherical, reducing the maxi-
mal depth of the slope of the spherically averaged profile,
while preserving the mean radial location of splashback.
Our toy model also predicts a significant dependence

on redshift (or equivalently, a dependence on the value
of ΩM ). We cannot test that prediction using similar-
ity solutions, because they assume ΩM = 1. To test
this prediction, we therefore ran 1-dimensional N-body
simulations of the collapse of isolated overdensities. The
simulations evolve the motion of spherical shells follow-
ing Eqn. (1). The initial linear overdensity profiles are
chosen to produce M ∝ as for various values of s. Figure
4 shows an example, for s = 3. The solid curves in the
figure show the results of the 1-D simulations, while for
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e=0.1
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e=0

FIG. 3. Caustics for self-similar halos [2, 7] with accretion
rate s = 3. The top panel shows the phase space diagram for
spherically symmetric collapse (solid black curve) and for 3D
collapse with e = 0.05 (colormap), while the bottom panel
shows the density vs. radius. The vertical line in the bottom
panel indicates the splashback radius predicted by the spher-
ical collapse model for this value of s. As the density profiles
demonstrate, the caustic location depends mainly on accre-
tion rate, with little if any dependence on the initial ellipticity
e. However, the caustic width does depend on e, apparently
because the shape of the splashback surface is related to the
initial ellipticity.

comparison, the dashed curve shows the similarity solu-
tion for s = 3. Note that for ΩM = 1, the 1-D simulation
does not exactly match the similarity solution. This is
because the dynamics, even in spherical symmetry, are
subject to a slew of instabilities that are not present in
the similarity solution [15, 19, 20]. To suppress these in-
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the similarity solutions that arise from the collapse of
scale-free perturbations [2, 7]. Fig. 3 shows one exam-
ple, for accretion rate s = 3. In all cases, we find good
agreement between the caustic location obtained in the
similarity solution and that predicted by the toy model.
This even holds true for collapse of highly triaxial per-
turbations: the main effect of the triaxiality is to make
the splashback surface nonspherical, reducing the maxi-
mal depth of the slope of the spherically averaged profile,
while preserving the mean radial location of splashback.
Our toy model also predicts a significant dependence

on redshift (or equivalently, a dependence on the value
of ΩM ). We cannot test that prediction using similar-
ity solutions, because they assume ΩM = 1. To test
this prediction, we therefore ran 1-dimensional N-body
simulations of the collapse of isolated overdensities. The
simulations evolve the motion of spherical shells follow-
ing Eqn. (1). The initial linear overdensity profiles are
chosen to produce M ∝ as for various values of s. Figure
4 shows an example, for s = 3. The solid curves in the
figure show the results of the 1-D simulations, while for
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FIG. 3. Caustics for self-similar halos [2, 7] with accretion
rate s = 3. The top panel shows the phase space diagram for
spherically symmetric collapse (solid black curve) and for 3D
collapse with e = 0.05 (colormap), while the bottom panel
shows the density vs. radius. The vertical line in the bottom
panel indicates the splashback radius predicted by the spher-
ical collapse model for this value of s. As the density profiles
demonstrate, the caustic location depends mainly on accre-
tion rate, with little if any dependence on the initial ellipticity
e. However, the caustic width does depend on e, apparently
because the shape of the splashback surface is related to the
initial ellipticity.

comparison, the dashed curve shows the similarity solu-
tion for s = 3. Note that for ΩM = 1, the 1-D simulation
does not exactly match the similarity solution. This is
because the dynamics, even in spherical symmetry, are
subject to a slew of instabilities that are not present in
the similarity solution [15, 19, 20]. To suppress these in-
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to determine the enclosed overdensity inside the splash-
back radius, ∆s. Our results do not strongly depend on
our assumed mass profile inside the halo. For example,
using an isothermal profile instead of NFW gives results
that are consistent at the∼ 10% level. Figure 2 shows the
predicted values of the enclosed overdensity. Throughout
this paper, we define overdensities relative to the mean
matter density, not the critical density. In our model,
∆s depends only on the halo’s accretion rate s, along
with the values of the background cosmological parame-
ters ΩM and ΩΛ at the time the halo is observed. The
behavior we find is unsurprising. As the accretion rate is
increased (larger s), the potential deepens more quickly
in time, resulting in splashback occuring at a smaller ra-
dius, or equivalently, at a larger enclosed overdensity ∆s.
Similarly, at low redshift when ΩM diminishes and ΩΛ

increases, the mean background density of the universe
ρ̄m decreases more during the time between turnaround
and splashback, again resulting in a larger ∆s.
Finally, although the model presented here is ex-

tremely simple to evaluate, we also provide a very rough
fitting function to approximate the location of splash-
back:

∆s ≈ AΩ−b−c s
M edΩM+e s3/4 , (3)

with fitted parameters A = 38, b = 0.57, c = 0.02, d =
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ity solutions, because they assume ΩM = 1. To test
this prediction, we therefore ran 1-dimensional N-body
simulations of the collapse of isolated overdensities. The
simulations evolve the motion of spherical shells follow-
ing Eqn. (1). The initial linear overdensity profiles are
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comparison, the dashed curve shows the similarity solu-
tion for s = 3. Note that for ΩM = 1, the 1-D simulation
does not exactly match the similarity solution. This is
because the dynamics, even in spherical symmetry, are
subject to a slew of instabilities that are not present in
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4 More, Diemer & Kravtsov

Figure 1. Projected density in a slice of thickness 0.15R200m through the center of two halos with low (left, � = 0.8) and high (right, � = 2.7) mass accretion
rates. The halos have similar masses, Mvir = 1.1 ⇥ 1014 and 1.8 ⇥ 1014 h�1 M� at z = 0. The white lines show Rvir (solid), R200m (dot-dashed), Rsp (dashed)
and Rinfall (dotted; see §3.1 for a detailed description of these radii). Rsp and Rinfall were calculated using the calibrations presented in Section 3.1 rather than
the density profiles of the individual halos shown. Halos with a low mass accretion rate exhibit a caustic at a radius significantly larger than R200m, whereas
fast-accreting halos have Rsp <⇠ R200m (at z = 0). The visualizations were created using the algorithm of Kaehler et al. (2012).
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Figure 2. Spherically averaged density profiles (top panels) and their logarithmic slope (bottom panels) of the two halos shown in Figure 1. The slopes were
computed using a profile smoothed with the fourth-order Savitzky & Golay (1964) filter over the 15 nearest bins. The steepening around Rsp is very pronounced
in both profiles, but the profile of the faster accreting halo reaches a steeper slope and at a smaller radius. The vertical lines in the bottom panels mark the same
radii shown in Figure 1 using the same line types, i.e. Rvir, Rsp, and Rinfall (defined as the radius where the mean radial velocity profile of v̄r reaches minimum)
from left to right. For the slower accreting halo (left), the estimate of Equation 5 slightly underestimates the true Rsp. This disagreement is not surprising since
the Rsp of individual halos are expected to scatter around the median relation.
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Figure 3. The surface number density profiles, ⌃g(R), of our fiducial sample of SDSS photometric galaxies around the two cluster subsamples are shown in
the left hand panel. The shaded regions show the 68 and 95 percent confidence regions of our model fit to the data. The right hand panel shows the inferred
constraints on the logarithmic slope of ⌃g(R) for the two subsamples. The splashback radius in 2d, R

2d
sp , corresponds to the location of the steepest slope or the

minimum of d log⌃g/d log R. The 68 percent constraints on R
2d
sp are marked with vertical shaded regions. These minima occur at significantly di↵erent locations

for the two cluster subsamples. The traditional halo boundary, R200m, is marked by the grey dotted vertical line.

Figure 4. The posterior distributions for the location of the steepest slope of
the galaxy density profiles around the high- and low-cgal cluster subsamples
are shown in orange and purple colored histograms, respectively. The light
shaded histograms correspond to the location of the steepest slopes of the
surface density profiles (2-d), while the dark shaded histograms correspond
to the location of steepest slope of the 3-d number density profiles inferred by
our fits. The locations of the steepest slopes for the two cluster subsamples
are significantly di↵erent, implying a di↵erent mass accretion rate onto these
cluster subsamples.

ure 2 show the logarithmic slope of the surface density pro-
files around the two subsamples. The slopes for both cluster
subsamples reach values steeper than ⇠ �1.6 on either side of
⇠ 1 h

�1Mpc. The surface density of galaxies around the high-
cgal cluster subsample reaches its steepest slope at a smaller
radius compared to the low-cgal subsample. The value of the
steepest slope is considerably larger for the high-cgal cluster
subsample than the low-cgal subsample. A comparison be-
tween the profiles of galaxies as a function of di↵erent mag-
nitude thresholds around any given cluster subsamples shows

very little di↵erence in the location of the steepest slope in
projection.

We fit the galaxy surface density profiles with the model de-
scribed in the previous section. The median and the 68 percent
confidence intervals of the posteriors of each of these param-
eters, as well as the best fit �2 values are listed in Table 1. The
number of degrees of freedom for our model is 8.

We show the 68 and 95 percent confidence regions from
the fits to the surface density of the fiducial sample of pho-
tometric galaxies around both our cluster subsamples in the
left hand panel of Figure 3. The corresponding confidence
regions for the logarithmic slope, including marginalization
over other model parameters, are shown in the right hand
panel. We use the samples from the posterior of the model
parameter space to infer the location of the steepest slope of
the projected galaxy density profile, R

2d
sp , and its uncertainty.

These numbers are reported for all of our subsamples and for
the di↵erent models in Table 1 as well.

The location of the splashback radius can be compared with
the traditional halo boundary definition, R200m for each sub-
sample. This is shown by the vertical shaded bands in the
right panels of Figure 2, as estimated from the posterior dis-
tribution of the halo masses for our two subsamples inferred
from the weak lensing measurement in Miyatake et al. (2015).

We now use the samples from the posterior distribution of
model parameters to infer the constraints on the location of
the minimum of the logarithmic derivative of the three dimen-
sional galaxy density profile, d log ⇢g/d log r. The resultant
constraints on R

3d
sp are reported in the penultimate column of

Table 1. The inferred value of R
3d
sp is always larger than the

corresponding R
2d
sp for all photometric galaxy samples around

both cluster subsamples, as shown explicitly in Figure 4. The
vertical dashed line corresponds to the traditional halo bound-
ary definition, R200m, for the two subsamples.

Note that, for our model, a transition function ftrans = 1,
would correspond to a simple density profile: a sum of
Einasto profile which describes well the inner regions and a
power law profile for the outer regions. However, the data
strongly disfavor such a model, with �2 values ranging from

More et al. (2016)
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to determine the enclosed overdensity inside the splash-
back radius, ∆s. Our results do not strongly depend on
our assumed mass profile inside the halo. For example,
using an isothermal profile instead of NFW gives results
that are consistent at the∼ 10% level. Figure 2 shows the
predicted values of the enclosed overdensity. Throughout
this paper, we define overdensities relative to the mean
matter density, not the critical density. In our model,
∆s depends only on the halo’s accretion rate s, along
with the values of the background cosmological parame-
ters ΩM and ΩΛ at the time the halo is observed. The
behavior we find is unsurprising. As the accretion rate is
increased (larger s), the potential deepens more quickly
in time, resulting in splashback occuring at a smaller ra-
dius, or equivalently, at a larger enclosed overdensity ∆s.
Similarly, at low redshift when ΩM diminishes and ΩΛ

increases, the mean background density of the universe
ρ̄m decreases more during the time between turnaround
and splashback, again resulting in a larger ∆s.
Finally, although the model presented here is ex-

tremely simple to evaluate, we also provide a very rough
fitting function to approximate the location of splash-
back:

∆s ≈ AΩ−b−c s
M edΩM+e s3/4 , (3)

with fitted parameters A = 38, b = 0.57, c = 0.02, d =
0.2, e = 0.52. This fitting function has ∼ 5% accuracy
over the range 0.5 < s < 4, 0.1 < ΩM < 1. The results
shown in this paper do not use this fitting function, since
it is equally simple to evaluate the spherical toy model.

III. COMPARISON WITH SIMULATIONS

In this section, we compare the predictions of the toy
model described in the previous section with results of
numerical simulations. First, we compare our model with
the similarity solutions that arise from the collapse of
scale-free perturbations [2, 7]. Fig. 3 shows one exam-
ple, for accretion rate s = 3. In all cases, we find good
agreement between the caustic location obtained in the
similarity solution and that predicted by the toy model.
This even holds true for collapse of highly triaxial per-
turbations: the main effect of the triaxiality is to make
the splashback surface nonspherical, reducing the maxi-
mal depth of the slope of the spherically averaged profile,
while preserving the mean radial location of splashback.
Our toy model also predicts a significant dependence

on redshift (or equivalently, a dependence on the value
of ΩM ). We cannot test that prediction using similar-
ity solutions, because they assume ΩM = 1. To test
this prediction, we therefore ran 1-dimensional N-body
simulations of the collapse of isolated overdensities. The
simulations evolve the motion of spherical shells follow-
ing Eqn. (1). The initial linear overdensity profiles are
chosen to produce M ∝ as for various values of s. Figure
4 shows an example, for s = 3. The solid curves in the
figure show the results of the 1-D simulations, while for

10
0

10
1

10
2

10
3

10
-2

10
-1

10
0

ρ

r

e=0.1
e=0.05

e=0

FIG. 3. Caustics for self-similar halos [2, 7] with accretion
rate s = 3. The top panel shows the phase space diagram for
spherically symmetric collapse (solid black curve) and for 3D
collapse with e = 0.05 (colormap), while the bottom panel
shows the density vs. radius. The vertical line in the bottom
panel indicates the splashback radius predicted by the spher-
ical collapse model for this value of s. As the density profiles
demonstrate, the caustic location depends mainly on accre-
tion rate, with little if any dependence on the initial ellipticity
e. However, the caustic width does depend on e, apparently
because the shape of the splashback surface is related to the
initial ellipticity.

comparison, the dashed curve shows the similarity solu-
tion for s = 3. Note that for ΩM = 1, the 1-D simulation
does not exactly match the similarity solution. This is
because the dynamics, even in spherical symmetry, are
subject to a slew of instabilities that are not present in
the similarity solution [15, 19, 20]. To suppress these in-


