Weak Lensing as a Tool for Dark Matter Physics

Chihway Chang (UChicago) with the DES \& LSST DESC Collaborations

In Weak Lensing (WL), we typically care about WHERE Dark Matter is, not WHAT it is...

Outline

- WL and state-of-the-art (DES-centric)
- WL applications for Dark Matter physics:
- Mass maps
- Towards the smallest halos
- Cluster profiles

Gravitational Lensing

According to GR, light is bent when traveling through spacetime perturbed by mass distributions.
deflection $\propto \frac{G M}{c^{2} b} \frac{D_{L S}}{D_{S}}$

Gravitational Lensing

According to GR, light is bent when traveling through spacetime perturbed by mass distributions.
deflection $\propto \frac{G M}{c^{2} b} \frac{D_{L S}}{D_{S}}$

Weak Lensing

Weak lensing is the lensing from the large-scale structure, and refers to the regime where you need to statistically extract the lensing signal from averaging over a very large number of galaxies.

Unlensed sources

Weak lensing

Weak Lensing Formalism

Lensing potential $\quad \psi(\boldsymbol{\theta}, r)=2 \int_{0}^{r} \mathrm{~d} r^{\prime} \frac{r-r^{\prime}}{r r^{\prime}} \Phi\left(\boldsymbol{\theta}, r^{\prime}\right)$

$$
\begin{aligned}
\text { Deflection } & \alpha & =\nabla \psi \\
\text { Convergence } & \kappa & =\frac{1}{2} \nabla^{2} \psi=\frac{1}{2}\left(\psi_{, 11}+\psi_{, 22}\right) \\
\text { Shear } & \gamma & =\gamma_{1}+i \gamma_{2}=\frac{1}{2}\left(\psi_{, 11}-\psi_{, 22}\right)+i \psi_{, 12}
\end{aligned}
$$

Weak Lensing Formalism

$$
\text { Lensing potential } \quad \psi(\boldsymbol{\theta}, r)=2 \int_{0}^{r} \mathrm{~d} r^{\prime} \frac{r-r^{\prime}}{r r^{\prime}} \Phi\left(\boldsymbol{\theta}, r^{\prime}\right)
$$

Deflection $\quad \alpha=\nabla \psi$
"mass"
$($ spin- 0$)$$\longleftarrow \quad$ Convergence $\quad \kappa=\frac{1}{2} \nabla^{2} \psi=\frac{1}{2}\left(\psi_{, 11}+\psi_{, 22}\right)$
$\begin{aligned} & \text { observable: } \\ & \text { distortion of }\end{aligned} \quad \gamma=\gamma_{1}+i \gamma_{2}=\frac{1}{2}\left(\psi_{, 11}-\psi_{, 22}\right)+i \psi_{, 12}, ~$
galaxy shapes
(spin-2)

Weak Lensing Formalism

$$
\text { Lensing potential } \quad \psi(\boldsymbol{\theta}, r)=2 \int_{0}^{r} \mathrm{~d} r^{\prime} \frac{r-r^{\prime}}{r r^{\prime}} \Phi\left(\boldsymbol{\theta}, r^{\prime}\right)
$$

Deflection $\quad \alpha=\nabla \psi$
$\underset{(\text { mpin- } 0)}{" \text { mass" Convergence }} \quad \kappa=\frac{1}{2} \nabla^{2} \psi=\frac{1}{2}\left(\psi_{, 11}+\psi_{, 22}\right)$
observable: Shear $\quad \gamma=\gamma_{1}+i \gamma_{2}=\frac{1}{2}\left(\psi_{, 11}-\psi, 22\right)+i \psi, 12$
distortion of
galaxy shapes
(spin-2)

Weak Lensing is Challenging

Weak Lensing is Challenging

Weak Lensing is Challenging

PhoSim: Peterson et al. (2015)

Plazas et al. (2014)

Weak Lensing State-of-the-Art

Zuntz et al. (2017)

- The Dark Energy Survey (DES) Y1 data
- 30 M galaxies with accurate shape measurements @ m~2\%
- Two independent shear catalogs
- Metacalibration (Sheldon \& Huff, 2017): innovative shape measurement algorithm

DES Y3, coming soon, 100 M WL galaxies over 5000 sq. degree...

Weak Lensing State-of-the-Art

DES Y1: clustering redshfit, COSMOS

- Photometric redshift (photo-z) is an inseparable part of the WL story. Recall

$$
\text { deflection } \propto \frac{G M}{c^{2} b} \frac{D_{L S}}{D_{S}}
$$

- Calibration and validation methods for the photo-z's is ongoing a lot of development these days

DES Y3: Self-Organizing Map (SOM)

LSST DESC Weak Lensing

Shear Measurement
PSF Modeling
TXPipe (3x2pt)
Mass Mapping and Higher Order Statistics
Blending

Mass Maps

Harvy et al. (2015)

Chang et al. (2017a)

Van Waerbeke (2013)

Oguri et al. (2017)

Recall: Convergence vs. Shear

Lensing potential

$$
\psi(\boldsymbol{\theta}, r)=2 \int_{0}^{r} \mathrm{~d} r^{\prime} \frac{r-r^{\prime}}{r r^{\prime}} \Phi\left(\boldsymbol{\theta}, r^{\prime}\right)
$$

Deflection

$$
\alpha=\nabla \psi
$$

Convergence	$\kappa=\frac{1}{2} \nabla^{2} \psi=\frac{1}{2}\left(\psi_{, 11}+\psi_{, 22}\right)$
Shear	$\gamma=\gamma_{1}+i \gamma_{2}=\frac{1}{2}\left(\psi_{, 11}-\psi_{, 22}\right)+i \psi_{, 12}$

The Kaiser-Squires (KS 1993) method:

$$
\hat{\kappa}_{\ell}=D_{\ell}^{*} \hat{\gamma}_{\ell} \quad D_{\ell}=\frac{\ell_{1}^{2}-\ell_{2}^{2}+2 i \ell_{1} \ell_{2}}{|\ell|^{2}}
$$

Recall: Convergence vs. Shear

Lensing potential

$$
\psi(\boldsymbol{\theta}, r)=2 \int_{0}^{r} \mathrm{~d} r^{\prime} \frac{r-r^{\prime}}{r r^{\prime}} \Phi\left(\boldsymbol{\theta}, r^{\prime}\right)
$$

Deflection

$$
\alpha=\nabla \psi
$$

Convergence	$\kappa=\frac{1}{2} \nabla^{2} \psi=\frac{1}{2}\left(\psi_{, 11}+\psi_{, 22}\right)$
Shear	$\gamma=\gamma_{1}+i \gamma_{2}=\frac{1}{2}\left(\psi_{, 11}-\psi\right.$,

The Kaiser-Squires (KS 1993) method:

Curl-free: signal

$$
\hat{\kappa}_{\ell}=D_{\ell}^{*} \hat{\gamma}_{\ell} \quad D_{\ell}=\frac{\ell_{1}^{2}-\ell_{2}^{2}+2 i \ell_{1} \ell_{2}}{|\ell|^{2}}
$$

Bullet Clusters

Use distance between stars (optical) and mass (WL) for 72 systems to infer DM self-interaction cross-section

Detection of DM at 7.6 sigma

Wide Field Mass Maps

Wide Field Mass Maps

Anomalies in WL Mass Maps?!

Developments in Mass Mapping

Improved dark matter peak detection with sparsity (GLIMPSE)

Dark Matter Map with 3 Methods

Towards the Smallest Halos

Standard CDM predicts dark matter halos should exist down to at least Earth mass. Alternative DM models would predict a low mass cutoff.

We can robustly measure halo mass of $\sim 10^{10} \mathbf{M}_{\odot}$; there exist evidence for the existence of $\sim 10^{8} \mathbf{M}_{\odot}$ halos. Pushing to lower mass is important to probing potential breakdown of CDM.

Low mass \longrightarrow hard to measure!

Towards the Smallest Halos

The luminosity
function and the stellar to halo mass relation at the low mass end inform us about Dark Matter models as well as astrophysics (galaxy formation)

Sifon et al. (2017)

Galaxy-galaxy Lensing

"Galaxy-galaxy lensing" measures the average mass profile of halos that host the galaxy sample of interest.

The precision of the measurement depends on: 1) number of lens galaxies
2) number of source galaxies 3) how well we know the redshifts

Prediction for Detection

Prediction for Detection

Prediction for Detection

See also Alexie Leauthaud \& Malin Renneby's talk Tuesday

Ultra Diffused Galaxies

- Ultra Diffuse Galaxies (UDGs) are large, faint galaxies, often found in galaxy clusters
- The existence and formation of UDGs are not well understood. Quantifying the mass and environment characteristics of UDGs will help - they could hold a lot of Dark Matter

43

44

49

53

58

63

54

Cluster Profiles

4
Different Dark Matter model predicts different mass 3 profiles for massive clusters, here we focus on the outskirts of galaxy clusters $\log _{10}\left(\rho / \rho_{\mathrm{m}}\right)$

0
-1
More, Diemer \& Kravstov (2015)

Cluster Profiles \& Splashback

- Boundary of the 1-stream vs. multi-stream region for infalling particles.
- Probe for assembly bias, dynamical friction, SIDM, modified gravity

Cluster Profiles \& Splashback

- Boundary of the 1 -stream vs. multi-stream region for infalling particles.
- Probe for assembly bias, dynamical friction, SIDM, modified gravity

Cluster Profiles \& Splashback

- Boundary of the 1-stream vs. multi-stream region for infalling particles.
- Probe for assembly bias, dynamical friction, SIDM, modified gravity

Novel Probe for New Physics

$\mathrm{r} / \mathrm{r}_{200 \mathrm{~m}}$
Dark energy dependence: weak

SIDM: complicated, but promising

Systematics, Systematics, Systematics

Summary

