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we knew the dark matter mass!
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lower limit*: Lee-Weinberg bound ⟨σv⟩ann > m2/mW2

upper limit**: unitarity ⟹ ⟨σv⟩ann < 4π/m2v

[**well okay, maybe it’s primordial black holes]
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Two Pheno Developments
1. Hidden Sectors 

• evade the Lee-Weinberg bound ⟨σv⟩ann > m2/mW2 if 
there is a new force that allows annihilations with 
mass scale mNP ≪ mW 

• Bjorken, Essig, Schuster, Toro 0906.0580 & PRD; Morrissey, Poland, Zurek 
0904.2567 & JHEP; Cheung, Ruderman, Wang, Yavin 0902.3246 & PRD 

2. Asymmetric Dark Matter 
• the dark matter abundance is not set by (symmetric) 

thermal freezeout 
• Kaplan, Luty, Zurek 0901.4117 (earlier work by Kitano et al, Nussinov…)
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• Bjorken, Essig, Schuster, Toro 0906.0580 & PRD; Morrissey, Poland, Zurek 
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2. Asymmetric Dark Matter 
• the dark matter abundance is not set by (symmetric) 

thermal freezeout 
• Kaplan, Luty, Zurek 0901.4117 (earlier work by Kitano et al, Nussinov…)

implication: DM doesn’t annihilate

implication: new low mass particles



How to look for DM in stars?
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SN1987A: Zeroth Order Facts

~ 99% of the grav. binding 
energy of a collapsing blue 
supergiant radiated away in 
the form of neutrinos over 

the course of ~ 10s

spacetelescope.org

Supernova 1987A:

http://spacetelescope.org


Supernova at the Order of 
Magnitude Level

⇢(r) = ⇢c ⇥
⇢

1 + k⇢(1� r/Rc) r < Rc

(r/Rc)�⌫ r � Rc

ρc=mN(110 MeV)3, Tc=30 MeV, ωp,c≈13 MeV

T (r) = Tc ⇥
⇢

1 + kT (1� r/Rc) r < Rc

(r/Rc)�⌫/3 r � Rc

“fiducial model” 
(Raffelt, 1995)



Numerical Models

“fiducial model” 
differs from sims 

by ~O(10):

value of Rf (important for optical 
depth, τ(r)=∫rRf Γ’(r’) dr’)

Possible values for Rfar distance physical justification

Rgain 100 km for r > Rgain, ν capture exceeds ν production

Rshock 1000 km for r > Rshock, material is not yet shock heated

Table 1. We consider two choices for the distant radius Rfar beyond which A′ particles must transport
energy to affect the neutrino cooling phase.

shell the integral in Eq. (2.3) would go over a very small range and τ → 0. However,

this is unphysical: if the energy from the dark photons can be reprocessed by Standard-

Model particles into neutrino energy, the dark photons do not provide an important energy

sink. For this reason, we suggest that the lower bound on Rfar is the neutrino gain radius

Rgain ∼ O(100 km), outside of which neutrino production has a lower rate than neutrino

absorption [26, 27]. A reasonable upper limit on Rfar is the shock radius Rs ∼ O(1000 km),

outside of which matter is as yet uncompressed [5]. Here, we will parameterize our uncertainty

on Rfar by using the gain radius and the shock radius, i.e. Rfar = 100 km and 1000 km, as

representative values. We list these in Tab. 1 for reference.

We point out here that our method of calculating L differs from prior work: we do not

split the calculation into free-streaming and trapped regimes. Instead, we allow τ to “speak

for itself” and suppress the integration in parts of parameter space where the optical depth

is large and the particles are mostly trapped. As we discuss in greater depth in Sec. 3.2, this

has very important consequences at large mixing angles. At large mixing angles, we find that

the energy spectrum is not thermal. For a given value of ϵ, assuming a thermal spectrum

underestimates the luminosity and thus leads to weaker limits.

2.2 Uncertainties Regarding the Explosion of SN1987A

SN1987A is a promising environment for examining new physics because of the combination

of the unique physical conditions attained in the star and the proximity of the explosion.

However, constraints on new physics from the observation of SN1987A are inherently limited

by difficulties in understanding the detailed process of the supernova even in the minimal

case with no new physics. Many aspects of SN1987A remain poorly understood, from the

nature of the progenitor to the primary driver of the “shock revival” required to sustain the

supernova explosion. The mass of the progenitor star is only bracketed within a factor of two,

and consequently the temperature and density profiles have large, qualitative uncertainties.

Given the uncertainties in modeling SN1987A, it is sufficient to use the conservative

limit on the luminosity in Eq. (2.1) to derive bounds. To aid our analytic understanding, we

will refer throughout the text to a “fiducial” model, a simple analytic supernova profile as

advocated for in [5]

ρ(r) = ρc×
{
1 + kρ(1− r/Rc) r < Rc

(r/Rc)−ν r ≥ Rc
, T (r) = Tc×

{
1 + kT (1− r/Rc) r < Rc

(r/Rc)−ν/3 r ≥ Rc
. (2.4)

– 7 –
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Kinetic Mixing

implicitly ~ q2

gauge invariant product of field strengths*
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“Plasmas Give Photon a Mass”

high density of charge carriers modifies 
the SM photon dispersion relation:

at low k, Π equals the “plasma mass” ωp

Kµ = (!, k)

!2
p(ne) =

Z
4⇡↵ d3p

(2⇡)32E

✓
1� p2

3E2

◆
[fe�(E) + fe+(E)]

lim
k!0

⇧ = !2
p(ne) '

4⇡↵ne

EF

!2 = k2 +Re⇧(k2,!2, ne)
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Coupling to Dark Photon
in vacuum:

L � ✏JSM
µ A0µ

εq2

1/(q2-Π)
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Rates for A’s
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Rates for A’s
dark photon rates ∝ SM photon rates:

[*resonance if m’2≫ImΠ and ∃ ωres with ReΠ(ωres)=m’2]
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Power and Optical Depth

differential power 
is the integral of 
production rate:

not all power gets out 
because of a nonzero 

“optical” depth:
⌧ =

Z Rfar

r
�abs(r

0)dr0

dP

dV
=

Z
d3k

(2⇡)3
!�prod

by detailed balance, Γprod = e-ω/T Γabs, so calculate Γabs  only



Differential Luminosity
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at large mixing: τ is large, dPres is suppressed
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at large mixing: τ is large, dPres is suppressed

Higher Mixing

differential luminosity dL = e-τ dP ≠ dP

need to know Γ for all r and ω



Soft Radiation Approximation

≫

use np scattering data with soft emission:

Rrapaj & Reddy, 1511.09136
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Pair Instability SNe
3

FIG. 1: Stellar death regions with schematic stellar evolution tracks in the plane of central density (ρc) and central temperature
(Tc). Colored death regions are labeled by the instability process causing the collapse of the stellar core, and the blue tracks are
labeled by the corresponding rough birth-mass range of objects reaching the different stages of central burning (indicated by
red dashed lines). Yellow diagonal lines mark the beginning of degeneracy (short-dashed) and strong degeneracy (long-dashed)
of the electron plasma. Note that realistic stellar tracks exhibit wiggles and loops when the ignition of the next burning stage
is reached and the stellar core adjusts to the new energy source (see Ref. [20].)

elements in their inner core. If, however, the stellar interior enters the regime of electron degeneracy before2 (yellow,
short-dashed line in Fig. 1) it ends as a white dwarf, being stabilized by lepton degeneracy pressure and cooling at
essentially fixed density.
Stars beyond certain birth-mass limits can reach the “death zones” in the upper and right parts of Fig. 1, where

the stellar core becomes gravitationally unstable. Contraction, and in the case of a runaway process finally collapse,
sets in when the effective adiabatic index drops below the critical value of 4/3 for mechanical stability (the actual
value is slightly decreased by rotation and increased by general relativistic gravity).
Three different processes can initiate the implosion of stellar cores in three areas of the ρc-Tc-plane indicated by

different colors in Fig. 1, playing a role in different kinds of CC events.

2 Fermions approach the degeneracy when their Fermi energy begins to exceed the thermal energy kBT , i.e. at T8 ∼ 4ρ2/35 for nonrelativistic

electrons and at T10 ∼ ρ1/38 for relativistic ones with Tx ≡ T/(10x K) and ρy ≡ ρ/(10y g cm−3).
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of the electron plasma. Note that realistic stellar tracks exhibit wiggles and loops when the ignition of the next burning stage
is reached and the stellar core adjusts to the new energy source (see Ref. [20].)
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FIG. 1: Stellar death regions with schematic stellar evolution tracks in the plane of central density (ρc) and central temperature
(Tc). Colored death regions are labeled by the instability process causing the collapse of the stellar core, and the blue tracks are
labeled by the corresponding rough birth-mass range of objects reaching the different stages of central burning (indicated by
red dashed lines). Yellow diagonal lines mark the beginning of degeneracy (short-dashed) and strong degeneracy (long-dashed)
of the electron plasma. Note that realistic stellar tracks exhibit wiggles and loops when the ignition of the next burning stage
is reached and the stellar core adjusts to the new energy source (see Ref. [20].)
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