Stellar Constraints on Dark Matter and Dark Sectors

Sam McDermott

1611.03864 & 1803.00993 (+ Rouven Essig & Jae Hyeok Chang) & ongoing…

August 5, 2019
Big Picture, ca. 2009

10 GeV 100 TeV

we knew the dark matter mass!
we knew the dark matter mass!

lower limit: Lee-Weinberg bound $\langle \sigma v \rangle_{\text{ann}} > \frac{m^2}{m_W^2}$

upper limit: unitarity $\Rightarrow \langle \sigma v \rangle_{\text{ann}} < \frac{4\pi}{m^2 v}$
Big Picture, ca. 2009

\[\mu\text{eV} \quad 10\text{ meV} \quad 10\text{ GeV} \quad 100\text{ TeV}\]

we knew the dark matter mass!

lower limit: Lee-Weinberg bound \(\langle \sigma v \rangle_{\text{ann}} > \frac{m^2}{m_W^2}\)

upper limit: unitarity \(\Leftrightarrow \langle \sigma v \rangle_{\text{ann}} < \frac{4\pi}{m^2v}\)

[*well okay, maybe it’s the QCD axion*]
Big Picture, ca. 2009

we knew the dark matter mass!

lower limit*: Lee-Weinberg bound \(\langle \sigma v \rangle_{\text{ann}} > \frac{m^2}{m_W^2} \)

upper limit**: unitarity \(\Rightarrow \langle \sigma v \rangle_{\text{ann}} < \frac{4\pi}{m^2 v} \)

[*well okay, maybe it’s the QCD axion]
[**well okay, maybe it’s primordial black holes]
Big Picture, ca. 2019

The dark matter can be anything!

- QCD axion
- canonical WIMP
- composite states, non-ΛCDM cosmology
- PBHs

MeV, TeV, Planck mass, 10^{-16} M_{⊙}, 100 M_{⊙}

The dark matter can be anything!
the dark matter can be anything!
lower bound: does it fit in a galaxy?
upper bound: gravitational effects
Big Picture, ca. 2019

What changed?
the dark matter can be anything!
lower bound: does it fit in a galaxy?
upper bound: gravitational effects
Two Pheno Developments

1. Hidden Sectors
 - evade the Lee-Weinberg bound $\langle \sigma v \rangle_{\text{ann}} > m^2/m_W^2$ if there is a new force that allows annihilations with mass scale $m_{\text{NP}} \ll m_W$
 - Bjorken, Essig, Schuster, Toro 0906.0580 & PRD; Morrissey, Poland, Zurek 0904.2567 & JHEP; Cheung, Ruderman, Wang, Yavin 0902.3246 & PRD

2. Asymmetric Dark Matter
 - the dark matter abundance is not set by (symmetric) thermal freezeout
 - Kaplan, Luty, Zurek 0901.4117 (earlier work by Kitano et al, Nussinov…)
1. Hidden Sectors

- evade the Lee-Weinberg bound \(\langle \sigma v \rangle_{\text{ann}} > \frac{m^2}{m_W^2} \) if there is a new force that allows annihilations with mass scale \(m_{\text{NP}} \ll m_W \)
- Bjorken, Essig, Schuster, Toro 0906.0580 & PRD; Morrissey, Poland, Zurek 0904.2567 & JHEP; Cheung, Ruderman, Wang, Yavin 0902.3246 & PRD

2. Asymmetric Dark Matter

- the dark matter abundance is not set by (symmetric) thermal freezeout
- Kaplan, Luty, Zurek 0901.4117 (earlier work by Kitano et al, Nussinov...)
Two Pheno Developments

1. Hidden Sectors
 - evade the Lee-Weinberg bound $\langle \sigma v \rangle_{ann} > m^2/m_W^2$ if there is a new force that allows annihilations with mass scale $m_{NP} \ll m_W$
 - implication: new low mass particles

 - Bjorken, Essig, Schuster, Toro 0906.0580 & PRD; Morrissey, Poland, Zurek 0904.2567 & JHEP; Cheung, Ruderman, Wang, Yavin 0902.3246 & PRD

2. Asymmetric Dark Matter
 - the dark matter abundance is not set by (symmetric) thermal freezeout

 - Kaplan, Luty, Zurek 0901.4117 (earlier work by Kitano et al, Nussinov…)

 - Kaplan, Luty, Zurek 0901.4117 (earlier work by Kitano et al, Nussinov…)
Two Pheno Developments

1. Hidden Sectors
 - evade the Lee-Weinberg bound $\langle \sigma v \rangle_{ann} > m^2/m_W^2$ if
 implication: new low mass particles
 - Bjorken, Essig, Schuster, Toro 0906.0580 & PRD; Morrissey, Poland, Zurek 0904.2567 & JHEP; Cheung, Ruderman, Wang, Yavin 0902.3246 & PRD

2. Asymmetric Dark Matter
 - the dark matter abundance is not set by (symmetric) thermal freezeout
 implication: DM doesn’t annihilate
 - Kaplan, Luty, Zurek 0901.4117 (earlier work by Kitano et al, Nussinov...)
How to look for DM in stars?

<table>
<thead>
<tr>
<th>Solar System Objects</th>
<th>Canonical DM (WIMP, QCD axion)</th>
<th>Asymmetric DM</th>
<th>Hidden Sectors (including light bosons)</th>
</tr>
</thead>
</table>

| Stellar Populations | Friedland, Giannotti, Wise 1210.1271 & PRL; Heger et al. 0809.4703 & ApJ | Zentner and Hearin 1110.5919 & PRD | Friedland + Giannotti 0709.2164; Redondo + Postma 0811.0326; An, Pospelov, Pradler 1302.3884; Hardy and Lasenby 1611.05852 |

| Dense Objects (WDs, NSs, …) | Baryakhtar et al., 1704.01577 & PRL | SDM, Yu, Zurek 1103.5472 & PRD; Kouvaris et al.; Bramante et al., … | Bramante + Linden 1405.1031 & PRL |

How to look for DM in stars?

<table>
<thead>
<tr>
<th>Solar System Objects</th>
<th>Canonical DM (WIMP, QCD axion)</th>
<th>Asymmetric DM</th>
<th>Hidden Sectors (including light bosons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press & Spergel Apj; Edsjö hep-ph/9504205; Mack, Beacom, Bertone 0705.4298 & PRD; Peter 0902.1347 & PRD</td>
<td>Frandsen + Sarkar 1003.4505 & PRL; Vincent, Serenelli, Scott 1504.04378 + 1605.06502 & JCAP</td>
<td>Farrar and Wadekar, 1903.12190</td>
<td></td>
</tr>
<tr>
<td>Friedland, Giannotti, Wise 1210.1271 & PRL; Heger et al. 0809.4703 & ApJ</td>
<td>Zentner and Hearin 1110.5919 & PRD</td>
<td>Friedland + Giannotti 0709.2164; Redondo + Postma 0811.0326; An, Pospelov, Pradler 1302.3884; Hardy and Lasenby 1611.05852</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stellar Populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baryakhtar et al., 1704.01577 & PRL</td>
</tr>
<tr>
<td>SDM, Yu, Zurek 1103.5472 & PRD; Kouvaris et al.; Bramante et al.,</td>
</tr>
<tr>
<td>Zhang 1404.7172 & JCAP; Chang, Essig, SDM 1803.00993 & JHEP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dense Objects (WDs, NSs, …)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turner et al. + Raffelt et al., 1988 - 1996; Chang, Essig, SDM 1803.00993 & JHEP</td>
</tr>
<tr>
<td>Chang, Essig, SDM 1803.00993 + 1611.03864 & JHEP; Hardy and Lasenby 1611.05852 & JHEP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supernova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang, Essig, SDM 1803.00993 + 1611.03864 & JHEP; Hardy and Lasenby 1611.05852 & JHEP</td>
</tr>
</tbody>
</table>
How to look for DM in stars?

<table>
<thead>
<tr>
<th>Solar System Objects</th>
<th>Canonical DM (WIMP, QCD axion)</th>
<th>Asymmetric DM</th>
<th>Hidden Sectors (including light bosons)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Press & Spergel Apj; Edsjö hep-ph/9504205; Mack, Beacom, Bertone 0705.4298 & PRD; Peter 0902.1347 & PRD</td>
<td>Frandsen + Sarkar 1003.4505 & PRL; Vincent, Serenelli, Scott 1504.04378 + 1605.06502 & JCAP</td>
<td>Farrar and Wadekar, 1903.12190</td>
</tr>
<tr>
<td></td>
<td>Friedland, Giannotti, Wise 1210.1271 & PRL; Heger et al. 0809.4703 & ApJ</td>
<td>Zentner and Hearin 1110.5919 & PRD</td>
<td>Friedland + Giannotti 0709.2164; Redondo + Postma 0811.0326; An, Pospelov, Pradler 1302.3884; Hardy and Lasenby 1611.05852</td>
</tr>
<tr>
<td>Stellar Populations</td>
<td>Baryakhtar et al., 1704.01577 & PRL</td>
<td>SDM, Yu, Zurek 1103.5472 & PRD; Kouvaris et al.; Bramante et al., ...</td>
<td>Bramante + Linden 1405.1031 & PRL</td>
</tr>
<tr>
<td>Dense Objects (WDs, NSs, ...)</td>
<td>Turner et al. + Raffelt et al., 1988 - 1996; Chang, Essig, SDM 1803.00993 & JHEP</td>
<td>Zhang 1404.7172 & JCAP; Chang, Essig, SDM 1803.00993 & JHEP</td>
<td>Chang, Essig, SDM 1803.00993 + 1611.03864 & JHEP; Hardy and Lasenby 1611.05852 & JHEP</td>
</tr>
<tr>
<td>Supernova</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part 2
SN1987A: Zeroth Order Facts

Supernova 1987A:

~ 99% of the grav. binding energy of a collapsing blue supergiant radiated away in the form of neutrinos over the course of ~ 10s
Supernova at the Order of Magnitude Level

\[\rho_c = m_N (110 \text{ MeV})^3, \ T_c = 30 \text{ MeV}, \ \omega_{p,c} \approx 13 \text{ MeV} \]

\[\rho(r) = \rho_c \times \begin{cases}
1 + k_\rho \left(1 - \frac{r}{R_c}\right) & r < R_c \\
\left(\frac{r}{R_c}\right)^{-\nu} & r \geq R_c
\end{cases} \]

\[T(r) = T_c \times \begin{cases}
1 + k_T \left(1 - \frac{r}{R_c}\right) & r < R_c \\
\left(\frac{r}{R_c}\right)^{-\nu/3} & r \geq R_c
\end{cases} \]

“fiducial model”
(Raffelt, 1995)
Numerical Models

“fiducial model” differs from sims by ~O(10):

value of R_f (important for optical depth, $\tau(r) = \int_r^{R_f} \Gamma'(r') \, dr'$)

<table>
<thead>
<tr>
<th>Possible values for R_{far}</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{gain}</td>
<td>100 km</td>
</tr>
<tr>
<td>R_{shock}</td>
<td>1000 km</td>
</tr>
</tbody>
</table>
This Talk: Dark Photons

vector boson of a new U(1) gauge group, kinetically mixed with Standard Model photon

Dark photons get produced / absorbed in EM interactions (~ϵ^2 as often as photons)
This Talk: Dark Photons

vector boson of a new U(1) gauge group, kinetically mixed with Standard Model photon

Dark photons get produced / absorbed in EM interactions ($\sim \varepsilon^2$ as often as photons)
Efficiently Produced

No Trapping

Thermal Emission

Efficiently Trapped

Luminosity vs. mixing angle

$\rho_r (m')$

$\rho_t (m')$

L_y

mixing

ρ'
Luminosity vs. mixing angle

\[\epsilon_{pr}(m') \epsilon_{tr}(m') \]

ruled out
Kinetic Mixing

gauge invariant product of field strengths

\[\mathcal{L} \supset \epsilon F_{1\mu\nu} F_{2}^{\mu\nu} / 2 \leftrightarrow A_1 \times A_2 \]
Kinetic Mixing

gauge invariant product of field strengths*

\[\mathcal{L} \supset \epsilon F_{1 \mu \nu} F_{2 \mu \nu} / 2 \iff \begin{array}{c}
A_1 \\
\times
\end{array} A_2 \]

(“EFT tells me to write down”)
Kinetic Mixing

gauge invariant product of field strengths*

\[\mathcal{L} \supset \epsilon F_{1\mu\nu} F_{2\mu\nu} / 2 \iff \]

implicitly \(\sim q^2 \)

(“EFT tells me to write down”)
Coupling to Dark Photon in vacuum:

\[e^- e^- \gamma e^- A' \bar{X} X \bar{X} f f \]
Coupling to Dark Photon in vacuum:

\[\varepsilon q^2 \]

The diagram shows a process involving a dark photon (\(A' \)) and other particles, with the coupling given by \(\varepsilon q^2 \).
Coupling to Dark Photon

in vacuum:

\[\varepsilon q^2 \]

\[1/q^2 \]
Coupling to Dark Photon in vacuum:

\[\mathcal{L} \supset \epsilon J_{\mu}^{\text{SM}} A'^{\mu} \]

Diagram:

- $f \rightarrow \gamma \rightarrow A'$
- $1/q^2$
- ϵq^2
“Plasmas Give Photon a Mass”

High density of charge carriers modifies the SM photon dispersion relation:

\[\omega^2 = k^2 + \text{Re} \Pi(k^2, \omega^2, n_e) \]

At low \(k \), \(\Pi \) equals the “plasma mass” \(\omega_p \)

\[
\lim_{k \to 0} \Pi = \omega_p^2(n_e) \approx \frac{4\pi\alpha n_e}{E_F}
\]

\[
\omega_p^2(n_e) = \int \frac{4\pi\alpha d^3p}{(2\pi)^32E} \left(1 - \frac{p^2}{3E^2}\right) [f_e^-(E) + f_e^+(E)]
\]
Coupling to Dark Photon

in vacuum:

\[\mathcal{L} \supset \epsilon J_{\mu}^{SM} A'_{\mu} \]

\[\epsilon q^2 \]

\[1/q^2 \]
Coupling to Dark Photon

in vacuum:

\[\mathcal{L} \supset \epsilon J_{\mu}^{SM} A'^{\mu} \]

in plasma:

\[\mathcal{L} \supset \frac{\epsilon q^2}{q^2 - \Pi} J_{\mu}^{SM} A'^{\mu} \]
Coupling to Dark Photon

in vacuum:

\[\mathcal{L} \supset \epsilon J_{\mu}^{\text{SM}} A'^\mu \]

in plasma, on-shell:

\[\mathcal{L} \supset \frac{\epsilon}{1 - \Pi/m'^2} J_{\mu}^{\text{SM}} A'^\mu \]

\[\epsilon m'^2 \]

\[1/(m'^2 - \Pi) \]
Rates for A’s

dark photon rates \propto SM photon rates:

$$\Gamma'_p = \left| \frac{\epsilon}{1 - \Pi/m'^2} \right|^2 \Gamma_p$$

$$= \frac{\epsilon^2 \Gamma_p}{(1 - \text{Re}\Pi/m'^2)^2 + (\text{Im}\Pi/m'^2)^2}$$
Rates for A's

dark photon rates \propto SM photon rates:

$$
\Gamma'_p = \left| \epsilon \frac{\Pi}{1 - \Pi/m'^2} \right|^2 \Gamma_p
$$

$$
= \frac{\epsilon^2 \Gamma_p}{(1 - \text{Re}\Pi/m'^2)^2 + (\text{Im}\Pi/m'^2)^2}
$$

[*resonance if $m'^2 \gg \text{Im}\Pi$ and $\exists \omega_{\text{res}}$ with $\text{Re}\Pi(\omega_{\text{res}}) = m'^2$]*
Photon Self-Energy

\[
\text{Re}\Pi = \begin{cases}
\frac{3\omega_p^2}{\nu^2} (1 - \nu^2) \left[\frac{1}{2\nu} \ln \left(\frac{1+\nu}{1-\nu} \right) - 1 \right] & L \\
\frac{3\omega_p^2}{2\nu^2} \left[1 - \frac{1-\nu^2}{2\nu} \ln \left(\frac{1+\nu}{1-\nu} \right) \right] & T
\end{cases}
\]

(v=|k|/\omega)

different dispersion relations for \(L \) and \(T \) modes
Photon Self-Energy

\[\text{Re}\Pi = \begin{cases}
\frac{3\omega_p^2}{v^2} (1 - v^2) \left[\frac{1}{2v} \ln \left(\frac{1+v}{1-v} \right) - 1 \right] & L \\
\frac{3\omega_p^2}{2v^2} \left[1 - \frac{1-v^2}{2v} \ln \left(\frac{1+v}{1-v} \right) \right] & T \end{cases} \]

Different dispersion relations for \(L \) and \(T \) modes.

\[\text{Im}\Pi \sim \text{rate at which photon thermalizes}: \]

\[\text{Im}\Pi = \omega \left(\Gamma_{\text{prod}} - \Gamma_{\text{abs}} \right) \]
Particle Luminosity

\[dL = e^{-\tau} \, dP \]
Particle Luminosity

energy lost in A’s per unit time

\[dL = e^{-\tau} dP \]
Particle Luminosity

energy lost in A’s per unit time

erate at which A’s are produced

\[dL = e^{-\tau} dP \]
Particle Luminosity

\[dL = e^{-\tau} dP \]

energy lost in A's per unit time
rate at which A's are produced

odds of escaping
Power and Optical Depth

differential power is the integral of production rate:

\[
\frac{dP}{dV} = \int \frac{d^3 k}{(2\pi)^3} \omega \Gamma_{\text{prod}}
\]

not all power gets out because of a nonzero “optical” depth:

\[
\tau = \int_{r}^{R_{\text{far}}} \Gamma_{\text{abs}}(r') dr'
\]

by detailed balance, \(\Gamma_{\text{prod}} = e^{-\omega/T} \Gamma_{\text{abs}} \), so calculate \(\Gamma_{\text{abs}} \) only.
Differential Luminosity

\[
\frac{dL}{dV} = \int \frac{d\omega}{2\pi^2} \frac{\epsilon^2 \omega^3 v e^{-\omega/T} \Gamma_{\text{abs}}(\omega, r)}{\Gamma_{\text{abs}}(\omega, r)} \left[1 - \frac{\text{Re}\Pi(\omega, r)}{m'^2} \right]^2 + \left[\frac{\text{Im}\Pi(\omega, r)}{m'^2} \right]^2 \right] \frac{e^2}{\lambda^2 + \text{Im}\Pi(\omega, r)} \int d\omega \Gamma_{\text{abs}}(\omega, r)
\]
\[
\frac{dL}{dV} = \int \frac{d\omega}{2\pi^2} \frac{\epsilon^2 \omega^3 \nu e^{-\omega/T} \Gamma_{\text{abs}}(\omega, r) e^{-\frac{\epsilon^2}{1 - \frac{\text{Re}\Pi(\omega, r)}{m^2}^2 + \left(\frac{\text{Im}\Pi(\omega, r)}{m^2}\right)^2}}}{\left[1 - \frac{\text{Re}\Pi(\omega, r)}{m^2}\right]^2 + \left(\frac{\text{Im}\Pi(\omega, r)}{m^2}\right)^2} \int dr \Gamma_{\text{abs}}(\omega, r) \]
Differential Luminosity

\[\frac{dL}{dV} \approx \frac{\Delta \omega_{\text{res}}}{2\pi^2} \frac{\epsilon^2 \omega^3 v e^{-\omega/T} \Gamma_{\text{abs}}(\omega, r)}{0 + [\text{Im}\Pi(\omega, r)/m'^2]^2} e^{-\epsilon^2 \cdots} \]

(for small \(\epsilon \))

(for \(\text{Im}\Pi_{\text{res}} << m'^2 \))
\[
\frac{dL}{dV} \approx \frac{\Delta \omega_{\text{res}}}{2\pi^2} \frac{\varepsilon^2 \omega^3 v e^{-\omega/T} \Gamma_{\text{abs}}(\omega, r)}{0 + [\text{Im} \Pi(\omega, r)/m'']^2} e^{-\Delta \omega_{\text{res}}/2} \quad \text{(for small } \varepsilon) \\
\]

rates cancel since \(\text{Im} \Pi \sim \Gamma, \Delta \omega_{\text{res}} \sim \Gamma \)
Differential Luminosity

\[\frac{dL}{dV} \approx \Delta \omega_{\text{res}} \frac{\epsilon^2 \omega^3 v e^{-\omega/T} \Gamma_{\text{abs}}(\omega, r)}{2\pi^2} 0 + [\text{Im}\Pi(\omega, r)/m'{}^2]^2 e^{-\epsilon} \ldots \]

rates cancel since \(\text{Im}\Pi \sim \Gamma, \Delta \omega_{\text{res}} \sim \Gamma\)

at low mixing, resonant luminosity is

\[\frac{dL_{\text{res}}}{dV} \approx \frac{\epsilon^2 m'{}^2 \omega_{\text{res}}^3 v^3}{2\pi \left(e^{\omega/T} - 1\right)} \implies \frac{dL_{\text{res}}}{dV} \times \text{Vol} \sim L_v \left(\epsilon/5 \times 10^{-9}\right)^2 (m'/\text{MeV})^2 \]
Differential Luminosity

(for Im\(\Pi\)\(_{\text{res}}\)\(<\(<m^{'2}\))

\[
\frac{dL}{dV} \sim \frac{\Delta \omega_{\text{res}}}{2\pi^2} \frac{\epsilon^2 \omega^3 v e^{-\omega/T} \Gamma_{\text{abs}}(\omega, r)}{0 + [\text{Im}\Pi(\omega, r)/m^{'2}]^2} e^{-\epsilon^2 \ldots}
\]

(for small \(\epsilon\))

rates cancel since Im\(\Pi\)\(\sim\)\(\Gamma\), \(\Delta \omega_{\text{res}}\)\(\sim\)\(\Gamma\)

at low mixing, resonant luminosity is

\[
\frac{dL_{\text{res}}}{dV} \sim \frac{\epsilon^2 m^{'2} \omega_{\text{res}}^3 v^3}{2\pi (e^{\omega/T} - 1)} \implies \frac{dL_{\text{res}}}{dV} \times \text{Vol} \sim L_v (\epsilon/5 \times 10^{-9})^2 (m^{'}/\text{MeV})^2
\]

bounds not flat in \(\epsilon\)-\(m^{'\prime}\) plane
Higher Mixing

at large mixing: τ is large, dP_{res} is suppressed

differential luminosity $dL = e^{-\tau} dP \neq dP$
Higher Mixing

at large mixing: τ is large, dP_{res} is suppressed

differential luminosity $dL = e^{-\tau} dP \neq dP$

need to know Γ for all r and ω
use np scattering data with soft emission:

$$
\Gamma'_{\text{br.}}|_{L,T} = \frac{32}{3\pi} \frac{\alpha_{\text{EM}} (\epsilon_m)^2_{L,T} n_n n_p}{\omega^3} \left(\frac{\pi T}{m_N} \right)^{3/2} \langle \sigma_{np}^{(2)} \rangle \left[\frac{m'_{2}}{\omega^2} \right]_L
$$

Rrapaj & Reddy, 1511.09136
Soft Radiation Approximation

use \emph{np} scattering data with soft emission:

\[
\Gamma'_{\text{br.}|L,T} = \frac{32}{3\pi} \frac{\alpha_{\text{EM}} (\epsilon_m)^2 L_{n_T} n_n n_p}{\omega^3} \left(\frac{\pi T}{m_N} \right)^{3/2} \langle \sigma_{np}^{(2)} \rangle \left[\frac{m'^2}{\omega^2} \right]_L
\]

\text{key point: falls sharply with } \omega
Soft Radiation Approximation

key point: falls sharply with ω

(\Rightarrow lower optical depth at high ω)

\[\Gamma'_{\text{br.}|L,T} = \frac{32}{3\pi} \frac{\alpha_{\text{EM}} (\epsilon_m)^2}{L,T} \frac{n_n n_p}{\omega^3} \left(\frac{\pi T}{m_N} \right)^{3/2} \left\langle \sigma_{np}^{(2)} \right\rangle \left[\frac{m'^2}{\omega^2} \right] L \]
$\frac{dL}{dV/d\omega/\varepsilon^2}$

$R=10\text{km}, m'=1\text{ MeV}$
\[\frac{dL}{dV/d\omega/\epsilon^2} \]
\[\frac{dL}{dV/d\omega/\varepsilon^2} \]

Graph:
- \(R = 10 \text{km}, m' = 1 \text{ MeV} \)
- Legend:
 - \(\lim_{\varepsilon \to 0} \)
 - \(\varepsilon = 10^{-10} \)
 - \(\varepsilon = 10^{-9} \)

Axes:
- \(4\pi r^2 \varepsilon^{-2} \frac{dL}{dV/d\omega} \) [\(L_c/\text{MeV} \cdot \text{km} \)]
- \(\omega \) [MeV]

Scale:
- Logarithmic scale from \(10^6 \) to \(10^{18} \) for \(L_c/\text{MeV} \cdot \text{km} \)
- Logarithmic scale from \(10^1 \) to \(10^2 \) for \(\omega \) [MeV]
\[\frac{dL}{dV/d\omega/\varepsilon^2} \]

Graph:

- **Title**: \(R=10\text{km, } m'=1 \text{ MeV} \)

- **Axes**:
 - Y-axis: \(4\pi r^2 \varepsilon^{-2} \frac{dL}{dVd\omega} \) [\(L_c/\text{MeV\cdot km} \)]
 - X-axis: \(\omega \) [MeV]

- **Legend**:
 - \(\lim_{\varepsilon \to 0} \)
 - \(\varepsilon = 10^{-10} \)
 - \(\varepsilon = 10^{-9} \)
 - \(\varepsilon = 10^{-8} \)
\[\frac{dL}{dV/\omega} \]
dL/dV/dω/ε^2
$$dL/dV/d\omega/\varepsilon^2$$
$\frac{dL}{dV/d\omega}$

$R=10\text{km}$, $m'=1\text{ MeV}$
\[\frac{dL}{dV/d\omega} \]

\[m' = 1 \text{ MeV} \]

\[4\pi r^2 \frac{dL}{dV d\omega} [L_v/\text{MeV} \cdot \text{km}] \]

\[\omega \text{ [MeV]} \]

- \(\epsilon = 10^{-8} \)
- \(\epsilon = 10^{-5} \)
- \(R = 10 \text{ km} \)
- \(R = 30 \text{ km} \)

volume emission!
\[\frac{dL}{dV/d\omega} \]

The diagram shows the distribution of neutrino emission as a function of energy \(\omega \) for different distances \(R \). The graph is labeled with the energy \(m' = 1 \) MeV. The curves represent surface emission and volume emission. The figure includes different emission rates denoted by \(\epsilon = 10^{-8} \) and \(\epsilon = 10^{-5} \). The axes are labeled as follows:

- Vertical axis: \(4\pi r^2 \frac{dL}{dVd\omega} \) [\(L_v \)/MeV·km]
- Horizontal axis: \(\omega \) [MeV]

Key points:
- Surface emission
- Volume emission
- Emission rates
- Distance labels: R = 10 km, R = 30 km
- Thermal emission
$dL/dV/d\omega$

\[m' = 1 \text{ MeV} \]

$\omega (\text{Wien peak}) \ll \omega (\text{real peak})$
\(\frac{dL}{dV/d\omega} \)

\[m' = 1 \text{ MeV} \]

thermal spectrum underestimates total luminosity
\[dL = e^{-\tau} dP \]
Results
Part II: Dark Pair Instability
Very small coupling

A’ production rate competes with SM photon or neutrino rate
Very small coupling

A' production rate competes with SM photon or neutrino rate

nonrelativistic A' produced at very low rates
Pair Instability SNe

FIG. 1: Stellar death regions with schematic stellar evolution tracks in the plane of central density (ρ_c) and central temperature (T_c). Colored death regions are labeled by the instability process causing the collapse of the stellar core, and the blue tracks are labeled by the corresponding rough birth-mass range of objects reaching the different stages of central burning (indicated by red dashed lines). Yellow diagonal lines mark the beginning of degeneracy (short-dashed) and strong degeneracy (long-dashed) of the electron plasma. Note that realistic stellar tracks exhibit wiggles and loops when the ignition of the next burning stage is reached and the stellar core adjusts to the new energy source (see Ref. [20]).

Stars beyond certain birth-mass limits can reach the “death zones” in the upper and right parts of Fig. 1, where the stellar core becomes gravitationally unstable. Contraction, and in the case of a runaway process, finally collapse, sets in when the effective adiabatic index drops below the critical value of $\frac{4}{3}$ for mechanical stability (the actual value is slightly decreased by rotation and increased by general relativistic gravity).

Three different processes can initiate the implosion of stellar cores in three areas of the ρ_c-T_c-plane indicated by different colors in Fig. 1, playing a role in different kinds of CC events.

Fermions approach the degeneracy when their Fermi energy begins to exceed the thermal energy $k_B T$, i.e., at $T_8 \sim \frac{\rho_{25}}{3}^{0.08}$ for nonrelativistic electrons and at $T_{10} \sim \frac{\rho_{18}}{3}^{0.08}$ for relativistic ones with $T_x \equiv \frac{T}{(10^x K)}$ and $\rho_y \equiv \frac{\rho}{(10^y \text{ gc m}^{-3})}$. [Janka, 1206.2503]
Pair Instability SNe

Appearance of non-relativistic e+e- pairs (catastrophically) causes adiabatic index to fall below 4/3 (n.b.: this has nontrivial ρ-dependence due to Pauli blocking at high ρ)
Pair Instability SNe

if T_c much less than m_e, too few “missing photons” to matter
Pair Instability SNe

If T_c greatly in excess of m_e, all electrons are relativistic and adiabatic index climbs again.
Tightly Coupled Dark States

Could a new particle (with or w/o pre-collapse abundance) have a similar effect?
Could a new particle (with or w/o pre-collapse abundance) have a similar effect?
Could a new particle (with or w/o pre-collapse abundance) have a similar effect?
Tightly Coupled Dark States

Could a new particle (with or w/o pre-collapse abundance) have a similar effect?

Order of magnitude estimate:
\[\Gamma \sim \varepsilon^2 m_{A'}^2 / 3T \]

Equilibration after \(10^7\) yr for \(m_{A'} \sim T \sim 100\) keV and \(\varepsilon \sim 10^{-16}\)
How to look for DM in stars?

<table>
<thead>
<tr>
<th>Solar System Objects</th>
<th>Canonical DM (WIMP, QCD axion)</th>
<th>Asymmetric DM</th>
<th>Hidden Sectors (including light bosons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press & Spergel Apj; Edsjö</td>
<td>Frandsen + Sarkar</td>
<td>Zentner and Hearin</td>
<td>Farrar and Wadekar, 1903.12190</td>
</tr>
<tr>
<td>hep-ph/9504205; Mack,</td>
<td>1003.4505 & PRL; Vincent,</td>
<td>1110.5919 & PRD</td>
<td>Friedland + Giannotti 0709.2164;</td>
</tr>
<tr>
<td>Beacom, Bertone 0705.4298 &</td>
<td>Serenelli, Scott 1504.04378 + 1605.06502 & JCAP</td>
<td></td>
<td>Redondo + Postma 0811.0326; An,</td>
</tr>
<tr>
<td>PRD; Peter 0902.1347 & PRD</td>
<td></td>
<td></td>
<td>Pospelov, Pradler 1302.3884; Hardy and</td>
</tr>
<tr>
<td>Friedland, Giannotti, Wise</td>
<td></td>
<td></td>
<td>Lasenby 1611.05852</td>
</tr>
<tr>
<td>1210.1271 & PRL; Heger et al.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0809.4703 & ApJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baryakhtar et al., 1704.01577</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>& PRL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turner et al. + Raffelt et al.,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988 - 1996; Chang, Essig,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDM 1803.00993 & JHEP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDM, Yu, Zurek 1103.5472</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>& PRD; Kouvaris et al.;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bramante et al., ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang 1404.7172 & JCAP;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chang, Essig, SDM 1803.00993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 1611.03864 & JHEP; Hardy and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasenby 1611.05852 & JHEP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stellar Populations

Dense Objects (WDs, NSs, ...)

Supernova
How to look for DM in stars?

<table>
<thead>
<tr>
<th></th>
<th>Canonical DM (WIMP, QCD axion)</th>
<th>Asymmetric DM</th>
<th>Hidden Sectors (including light bosons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar System Objects</td>
<td>Press & Spergel Apj; Edsjö hep-ph/9504205; Mack, Beacom, Bertone 0705.4298 & PRD; Peter 0902.1347 & PRD</td>
<td>Frandsen + Sarkar 1003.4505 & PRL; Vincent, Serenelli, Scott 1504.04378 + 1605.06502 & JCAP</td>
<td>Farrar and Wadekar, 1903.12190</td>
</tr>
<tr>
<td>Stellar Populations</td>
<td>Friedland, Giannotti, Wise 1210.1271 & PRL; Heger et al. 0809.4703 & ApJ</td>
<td>Zentner and Hearin 1110.5919 & PRD</td>
<td>Friedland + Giannotti 0709.2164; Redondo + Postma 0811.0326; An, Pospelov, Pradler 1302.3884; Hardy and Lasenby 1611.05852</td>
</tr>
<tr>
<td>Dense Objects (WDs, NSs, …)</td>
<td>Baryakhtar et al., 1704.01577 & PRL</td>
<td></td>
<td>Bramante + Linden 1405.1031 & PRL</td>
</tr>
<tr>
<td>Supernova</td>
<td>Turner et al. + Raffelt et al., 1988 - 1996; Chang, Essig, SDM 1803.00993 & JHEP</td>
<td>Zhang 1404.7172 & JCAP; Chang, Essig, SDM 1803.00993 & JHEP</td>
<td>Chang, Essig, SDM 1803.00993 + 1611.03864 & JHEP; Hardy and Lasenby 1611.05852 & JHEP</td>
</tr>
</tbody>
</table>

talks tomorrow by Giannotti and Raen
How to look for DM in stars?

<table>
<thead>
<tr>
<th>Solar System Objects</th>
<th>Canonical DM (WIMP, QCD axion)</th>
<th>Asymmetric DM</th>
<th>Hidden Sectors (including light bosons)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exciting opportunities for crosstalk between theorists / experimentalists / observationalists / modelers / etc.!!

- **Solar System Objects**:
 - Press & Spergel, hep-ph/9504205; Mack, Beacom, Bertone 0705.4298 & PRD; Peter 0902.1347 & PRD.
 - Frandsen & Sarkar 1003.4505 & PRL; Vincent, Serenelli, Scott 1504.04378 & 1605.06502 & JCAP.
 - Farrar & Wadekar, 1903.12190.

- **Stellar Populations**:
 - Friedland, Giannotti, Wise 1210.1271 & PRL; Heger et al. 0809.4703 & ApJ.
 - Zentner & Hearin 1110.5919 & PRD.
 - Friedland & Giannotti 0709.2164; Redondo & Postma 0811.0326; An, Pospelov, Pradler 1302.3884; Hardy & Lasenby 1611.05852.

- **Dense Objects (WDs, NSs, …)**:
 - Baryakhtar et al., 1704.01577 & PRL.
 - SDM, Yu, Zurek 1103.5472 & PRD; Kouvaris et al.; Bramante et al., …
 - Bramante & Linden 1405.1031 & PRL.

- **Supernova**:
 - Turner et al. + Raffelt et al., 1988 - 1996; Chang, Essig, SDM 1803.00993 & JHEP.
 - Zhang 1404.7172 & JCAP; Chang, Essig, SDM 1803.00993 & JHEP.
 - Chang, Essig, SDM 1803.00993 + 1611.03864 & JHEP; Hardy and Lasenby 1611.05852 & JHEP.