Stellar Constraints on Dark Matter and Dark Sectors

Sam McDermott

1611.03864 & 1803.00993 (+ Rouven Essig & Jae Hyeok Chang) & ongoing...

August 5, 2019

10 GeV 100 TeV

we knew the dark matter mass!

10 GeV 100 TeV

we knew the dark matter mass!

we knew the dark matter mass!

[*well okay, maybe it's the QCD axion]

we knew the dark matter mass!

[*well okay, maybe it's the QCD axion] [**well okay, maybe it's primordial black holes]

the dark matter can be anything!

the dark matter can be anything! lower bound: does it fit in a galaxy? upper bound: gravitational effects

the dark matter can be anything! lower bound: does it fit in a galaxy? upper bound: gravitational effects

Two Pheno Developments

- 1. Hidden Sectors
 - evade the Lee-Weinberg bound $\langle \sigma v \rangle_{ann} > m^2/m_W^2$ if there is a new force that allows annihilations with mass scale $m_{NP} \ll m_W$
 - Bjorken, Essig, Schuster, Toro 0906.0580 & PRD; Morrissey, Poland, Zurek 0904.2567 & JHEP; Cheung, Ruderman, Wang, Yavin 0902.3246 & PRD
- 2. Asymmetric Dark Matter
 - the dark matter abundance is not set by (symmetric) thermal freezeout
 - Kaplan, Luty, Zurek 0901.4117 (earlier work by Kitano et al, Nussinov...)

Two Pheno Developments

- 1. Hidden Sectors
 - evade the Lee-Weinberg bound (gv)orn > m²/mw² if
 implication: new low mass particles
 - Bjorken, Essig, Schuster, Toro 0906.0580 & PRD; Morrissey, Poland, Zurek 0904.2567 & JHEP; Cheung, Ruderman, Wang, Yavin 0902.3246 & PRD
- 2. Asymmetric Dark Matter
 - the dark matter abundance is not set by (symmetric) thermal freezeout
 - Kaplan, Luty, Zurek 0901.4117 (earlier work by Kitano et al, Nussinov...)

Two Pheno Developments

- 1. Hidden Sectors
 - evade the Lee-Weinberg bound (gv)on > m²/mw² if
 implication: new low mass particles
 - Bjorken, Essig, Schuster, Toro 0906.0580 & PRD; Morrissey, Poland, Zurek 0904.2567 & JHEP; Cheung, Ruderman, Wang, Yavin 0902.3246 & PRD
- 2. Asymmetric Dark Matter
 - the dark matter abundance is not eat by (symmetric) implication: DM doesn't annihilate
 - Kaplan, Luty, Zurek 0901.4117 (earner work by Kitano et al, Nussinov...)

How to look for DM in stars?

	Canonical DM (WIMP, QCD axion)	Asymmetric DM	Hidden Sectors (including light bosons)
Solar System Objects	Press & Spergel Apj; Edsjö hep-ph/9504205; Mack, Beacom, Bertone 0705.4298 & PRD; Peter 0902.1347 & PRD	Frandsen + Sarkar 1003.4505 & PRL; Vincent, Serenelli, Scott 1504.04378 + 1605.06502 & JCAP	Farrar and Wadekar, 1903.12190
Stellar Populations	Friedland, Giannotti, Wise 1210.1271 & PRL; Heger et al. 0809.4703 & ApJ	Zentner and Hearin 1110.5919 & PRD	Friedland + Giannotti 0709.2164; Redondo + Postma 0811.0326; An, Pospelov, Pradler 1302.3884; Hardy and Lasenby 1611.05852
Dense Objects (WDs, NSs,)	Baryakhtar et al., 1704.01577 & PRL	SDM, Yu, Zurek 1103.5472 & PRD; Kouvaris et al.; Bramante et al.,	Bramante + Linden 1405.1031 & PRL
Supernova	Turner et al. + Raffelt et al., 1988 - 1996; Chang, Essig, <i>SDM</i> 1803.00993 & JHEP	Zhang 1404.7172 & JCAP; Chang, Essig, <i>SDM</i> 1803.00993 & JHEP	Chang, Essig, <i>SDM</i> 1803.00993 + 1611.03864 & JHEP; Hardy and Lasenby 1611.05852 & JHEP

How to look for DM in stars?

	Canonical DM (WIMP, QCD axion)	Asymmetric DM	Hidden Sectors (including light bosons)
Solar System Objects	Press & Spergel Apj; Edsjö hep-ph/9504205; Mack, Beacom, Bertone 0705.4298 & PRD; Peter 0902.1347 & PRD	Frandsen + Sarkar 1003.4505 & PRL; Vincent, Serenelli, Scott 1504.04378 + 1605.06502 & JCAP	Farrar and Wadekar, 1903.12190
Stellar Populations	Friedland, Giannotti, Wise 1210.1271 & PRL; Heger et al. 0809.4703 & ApJ	Zentner and Hearin 1110.5919 & PRD	Friedland + Giannotti 0709.2164; Redondo + Postma 0811.0326; An, Pospelov, Pradler 1302.3884; Hardy and Lasenby 1611.05852
Dense Objects (WDs, NSs,)	Baryakhtar et al., 1704.01577 & PRL	SDM, Yu, Zurek 1103.5472 & PRD; Kouvaris et al.; Bramante et al., Par	Bramante + Linden 1405.1031 & PRL t 1
Supernova	Turner et al. + Raffelt et al., 1988 - 1996; Chang, Essig, <i>SDM</i> 1803.00993 & JHEP	Zhang 1404.7172 & JCAP; Chang, Essig, <i>SDM</i> 1803.00993 & JHEP	Chang, Essig, <i>SDM</i> 1803.00993 + 1611.03864 & JHEP; Hardy and Lasenby 1611.05852 & JHEP

How to look for DM in stars?

	Canonical DM (WIMP, QCD axion)	Asymmetric DM	Hidden Sectors (including light bosons)
Solar System Objects	Press & Spergel Apj; Edsjö hep-ph/9504205; Mack, Beacom, Bertone 0705.4298 & PRD; Peter 0902.1347 & PRD	Frandsen + Sarkar 1003.4505 & PRL; Vincent, Serenelli, Scott 1504.04378 + 1605.06502 & JCAP	Farrar and Wadekar, 1903.12190
Stellar Populations	Friedland, Giannotti, Wise 1210.1271 & PRL; Heger et al. 0809.4703 & ApJ	Zentner and Hearin 1110.5919 & PRD	Friedland + Giannotti 0709.2164; Redondo + Postma 0811.0326; An, Pospelov, Pradler 1302.3884; Hardy and Lasenby 1611.05852
Dense Objects (WDs, NSs,)	Baryakhtar et al., 1704.01577 & PRL	SDM, Yu, Zurek 1103.5472 & PRD; Kouvaris et al.; Bramante et al.,	Bramante + Linden 1405.1031 & PRL
Supernova	Turner et al. + Raffelt et al., 1988 - 1996; Chang, Essig, <i>SDM</i> 1803.00993 & JHEP	Zhang 1404.7172 & JCAP; Chang, Essig, <i>SDM</i> 1803.00993 & JHEP	Chang, Essig, <i>SDM</i> 1803.00993 + 1611.03864 & JHEP; Hardy and Lasenby 1611.05852 & JHEP

SN1987A: Zeroth Order Facts

Supernova 1987A:

~ 99% of the grav. binding energy of a collapsing blue supergiant radiated away in the form of neutrinos over the course of ~ 10s

<u>spacetelescope.org</u>

Supernova at the Order of Magnitude Level

ρ_c=m_N(110 MeV)³, T_c=30 MeV, ω_{p,c}≈13 MeV

$$\rho(r) = \rho_c \times \begin{cases} 1 + k_{\rho}(1 - r/R_c) & r < R_c \\ (r/R_c)^{-\nu} & r \ge R_c \end{cases}$$
$$T(r) = T_c \times \begin{cases} 1 + k_T(1 - r/R_c) & r < R_c \\ (r/R_c)^{-\nu/3} & r \ge R_c \end{cases}$$

"fiducial model" (Raffelt, 1995)

Numerical Models

value of R_f (important for optical depth, $\tau(r) = \int r^{Rf} \Gamma'(r') dr'$)

tance
0 km
)0 km

This Talk: Dark Photons

vector boson of a new U(1) gauge group, kinetically mixed with Standard Model photon

Dark photons get produced / absorbed in EM interactions (~ε² as often as photons)

This Talk: Dark Photons

vector boson of a new U(1) gauge group, kinetically mixed with Standard Model photon

Dark photons get produced / absorbed in EM interactions (~ε² as often as photons)

Luminosity vs. mixing angle

Luminosity vs. mixing angle

Kinetic Mixing

gauge invariant product of field strengths

Kinetic Mixing

gauge invariant product of field strengths*

*("EFT tells me to write down")

Kinetic Mixing

gauge invariant product of field strengths*

$$\mathcal{L} \supset \epsilon F_{1\mu\nu} F_2^{\mu\nu} / 2 \Leftrightarrow \underbrace{A_1 \qquad A_2}_{\text{implicitly ~ q}^2}$$

*("EFT tells me to write down")

in vacuum:

in vacuum:

in vacuum:

in vacuum:

"Plasmas Give Photon a Mass"

high density of charge carriers modifies the SM photon dispersion relation:

$$\omega^2 = k^2 + \operatorname{Re}\Pi(k^2, \omega^2, n_e)$$
 $_{K^{\mu} = (\omega, k)}$

at low k, Π equals the "plasma mass" ω_{p}

$$\lim_{k \to 0} \Pi = \omega_p^2(n_e) \simeq \frac{4\pi\alpha n_e}{E_F}$$

$$\omega_p^2(n_e) = \int \frac{4\pi\alpha \, d^3p}{(2\pi)^3 2E} \left(1 - \frac{p^2}{3E^2}\right) \left[f_{e^-}(E) + f_{e^+}(E)\right]$$

in vacuum:

in vacuum:

in vacuum:

Rates for A's

dark photon rates \propto SM photon rates:

$$\Gamma'_{p} = \left| \frac{\epsilon}{1 - \Pi/m^{2}} \right|^{2} \Gamma_{p}$$
$$= \frac{\epsilon^{2} \Gamma_{p}}{(1 - \operatorname{Re}\Pi/m^{2})^{2} + (\operatorname{Im}\Pi/m^{2})^{2}}$$

Rates for A's

dark photon rates \propto SM photon rates:

$$\Gamma_p' = \left| \frac{\epsilon}{1 - \Pi/m'^2} \right|^2 \Gamma_p$$
$$= \frac{\epsilon^2 \Gamma_p}{(1 - \operatorname{Re}\Pi/m'^2)^2 + (\operatorname{Im}\Pi/m'^2)^2}$$

[*resonance if m'²»ImП and $\exists \omega_{res}$ with ReП(ω_{res})=m'²]

Photon Self-Energy

$$\operatorname{Re}\Pi = \begin{cases} \frac{3\omega_p^2}{v^2}(1-v^2) \left[\frac{1}{2v}\ln\left(\frac{1+v}{1-v}\right) - 1\right] & L\\ \frac{3\omega_p^2}{2v^2} \left[1 - \frac{1-v^2}{2v}\ln\left(\frac{1+v}{1-v}\right)\right] & T\\ & (v=|\mathbf{k}|/\omega) \end{cases}$$

different dispersion relations for L and T modes
Photon Self-Energy

$$\operatorname{Re}\Pi = \begin{cases} \frac{3\omega_p^2}{v^2}(1-v^2) \left[\frac{1}{2v}\ln\left(\frac{1+v}{1-v}\right) - 1\right] & L\\ \frac{3\omega_p^2}{2v^2} \left[1 - \frac{1-v^2}{2v}\ln\left(\frac{1+v}{1-v}\right)\right] & T\\ & (v=|\mathbf{k}|/\omega) \end{cases}$$

different dispersion relations for L and T modes

Im Π ~ rate at which photon thermalizes: Im $\Pi = \omega \left(\Gamma_{\rm prod} - \Gamma_{\rm abs} \right)$

$dL = e^{-\tau} dP$

energy lost in A's per unit time $dL = e^{-\tau} dP$

energy lost rate at which in A's per A's are unit time produced $dL = e^{-\tau} dP$

energy lost rate at which in A's per A's are unit time produced $dL = e^{-\tau} dP$ odds of escaping

Power and Optical Depth

differential power is the integral of production rate:

$$\frac{dP}{dV} = \int \frac{d^3k}{(2\pi)^3} \omega \Gamma_{\rm prod}$$

not all power gets out because of a nonzero "optical" depth:

$$au = \int_{r}^{R_{\mathrm{far}}} \Gamma_{\mathrm{abs}}(r') dr'$$

by detailed balance, $\Gamma_{\text{prod}} = e^{-\omega/T} \Gamma_{\text{abs}}$, so calculate Γ_{abs} only

$$\frac{dL}{dV} = \int \frac{d\omega}{2\pi^2} \frac{\epsilon^2 \omega^3 v e^{-\omega/T} \Gamma_{\text{abs}}(\omega, r) e^{-\frac{\epsilon^2}{\left[1 - \frac{\operatorname{Re}\Pi(\omega, r)}{m'^2}\right]^2 + \left[\frac{\operatorname{Im}\Pi(\omega, r)}{m'^2}\right]^2} \int dr \Gamma_{\text{abs}}(\omega, r) e^{-\frac{\epsilon^2}{\left[1 - \frac{\operatorname{Re}\Pi(\omega, r)}{m'^2}\right]^2} + \left[\frac{\operatorname{Im}\Pi(\omega, r)}{m'^2}\right]^2} \left[1 - \frac{\operatorname{Re}\Pi(\omega, r)}{m'^2}\right]^2 + \left[\frac{\operatorname{Im}\Pi(\omega, r)}{m'^2}\right]^2}$$

$$\frac{dL}{dV} = \int \frac{d\omega}{2\pi^2} \frac{\epsilon^2 \omega^3 v e^{-\omega/T} \Gamma_{abs}(\omega, r) e^{-\frac{\epsilon^2}{\left[1 - \frac{\operatorname{Mer}(\omega, r)}{m'^2}\right]^2 + \left[\frac{\operatorname{Im}\Pi(\omega, r)}{m'^2}\right]^2} \int dr \Gamma_{abs}(\omega, r) e^{-\frac{\epsilon^2}{\left[1 - \frac{\operatorname{Mer}(\omega, r)}{m'^2}\right]^2} + \left[\frac{\operatorname{Im}\Pi(\omega, r)}{m'^2}\right]^2}$$

(for Im $\Pi_{\text{res}} <<$ m'2) (for small ε) $\frac{dL}{dV} \simeq \frac{\Delta \omega_{\text{res}}}{2\pi^2} \frac{\epsilon^2 \omega^3 v e^{-\omega/T} \Gamma_{\text{abs}}(\omega, r)}{0 + [\text{Im}\Pi(\omega, r)/m'^2]^2} e^{-\omega m}$

(for Im $\Pi_{\text{res}} <<$ m'2) (for small ε) $\frac{dL}{dV} \simeq \frac{\Delta \omega_{\text{res}}}{2\pi^2} \frac{\epsilon^2 \omega^3 v e^{-\omega/T} \Gamma_{\text{abs}}(\omega, r)}{0 + [\text{Im}\Pi(\omega, r)/m'^2]^2} e^{-\omega r} \cdots$ rates cancel since Im $\Pi \sim \Gamma$, $\Delta \omega_{\text{res}} \sim \Gamma$

(for small ε) (for $Im\Pi_{res} < <m'^2$) $\frac{dL}{dV} \simeq \frac{\Delta\omega_{\rm res}}{2\pi^2} \frac{\epsilon^2 \omega^3 v e^{-\omega/T} \Gamma_{\rm abs}(\omega, r)}{0 + \left[\mathrm{Im}\Pi(\omega, r)/m'^2\right]^2} e^{-\omega} \cdots^{-1}$ rates cancel since $Im\Pi \sim \Gamma$, $\Delta \omega_{res} \sim \Gamma$ at low mixing, resonant luminosity is $\frac{dL_{\rm res}}{dV} \simeq \frac{\epsilon^2 m'^2 \omega_{\rm res}^3 v^3}{2\pi \left(e^{\omega/T} - 1\right)} \implies \frac{dL_{\rm res}}{dV} \times {\rm Vol} \ {}^{\sim}{\rm L}_{\nu} \ (\epsilon/5 \times 10^{-9})^2 \ ({\rm m'/MeV})^2$

(for small ε) (for $Im\Pi_{res} < <m'^2$) $\frac{dL}{dV} \simeq \frac{\Delta\omega_{\rm res}}{2\pi^2} \frac{\epsilon^2 \omega^3 v e^{-\omega/T} \Gamma_{\rm abs}(\omega, r)}{0 + \left[\mathrm{Im}\Pi(\omega, r)/m'^2\right]^2} e^{-\omega} \cdots^{-1}$ rates cancel since $Im\Pi \sim \Gamma$, $\Delta \omega_{res} \sim \Gamma$ bounds not flat in ε-m' plane $\frac{dL_{\rm res}}{dV} \simeq \frac{\epsilon^2 m'^2 \omega_{\rm res}^3 v^3}{2\pi \left(e^{\omega/T} - 1\right)} \Longrightarrow \frac{dL_{\rm res}}{dV} \times \text{Vol } \sim \text{L}_{\nu} (\epsilon/5 \times 10^{-9})^2 \text{ (m'/MeV)}^2$

Higher Mixing

at large mixing: τ is large, dP_{res} is suppressed differential luminosity dL = e^{- τ} dP \neq dP

Higher Mixing

at large mixing: τ is large, dP_{res} is suppressed differential luminosity dL = $e^{-\tau} dP \neq dP$ need to know Γ for all r and ω

Soft Radiation Approximation

use np scattering data with soft emission:

$$P_{1} \xrightarrow{s} K P_{3} P_{1} \xrightarrow{K_{s}} P_{3} P_{1} \xrightarrow{K_{s}} P_{3} P_{1} \xrightarrow{P_{3}} P_{3} P_{1} \xrightarrow{P_{3}} P_{3} \xrightarrow{P_{1}} P_{3} \xrightarrow{P_{3}} P_{4} \xrightarrow{P_{4}} P_{2} \xrightarrow{P_{4}} P_{4} \xrightarrow{P_{4}} \xrightarrow{P_{4}} P_{4} \xrightarrow{P_{4}} P_{4} \xrightarrow{P_{4}} \xrightarrow{P_{4}} P_{4} \xrightarrow{P_{4}} \xrightarrow{P_{4$$

$$\Gamma_{\text{br.}|L,T}' = \frac{32}{3\pi} \frac{\alpha_{\text{EM}}(\epsilon_{\text{m}})_{L,T}^2 n_n n_p}{\omega^3} \left(\frac{\pi T}{m_N}\right)^{3/2} \left\langle \sigma_{np}^{(2)} \right\rangle \left[\frac{m'^2}{\omega^2}\right]_L$$

Soft Radiation Approximation

use np scattering data with soft emission:

Soft Radiation Approximation

use np scattering data with soft emission:

 $(\Rightarrow$ lower optical depth at high ω)

$dL/dV/d\omega$

$dL/dV/d\omega$

dL/dV/dw

$dL/dV/d\omega$

$dL/dV/d\omega$

dL/dV/dw

$\overline{dL} = e^{-\tau} dP$

Results

Part II: Dark Pair Instability

Pair Instability SNe

Pair Instability SNe

Appearance of non-relativistic e+e- pairs (catastrophically) causes adiabatic index to fall below 4/3 (n.b.: this has nontrivial ρdependence due to Pauli blocking at high ρ)

Pair Instability SNe

Pair Instability SNe

Could a new particle (with or w/o pre-collapse abundance) have a similar effect?

Could a new particle (with or w/o pre-collapse abundance) have a similar effect?

Could a new particle (with or w/o pre-collapse abundance) have a similar effect?

Could a new particle (with w/o pre-colla abundance) h a similar effe

 $\log \rho_c [g/cm^3]$

"Dark Pair Instability" for m_{A'} ~ 0.1 m_e

How to look for DM in stars?

	Canonical DM (WIMP, QCD axion)	Asymmetric DM	Hidden Sectors (including light bosons)
Solar System Objects	Press & Spergel Apj; Edsjö hep-ph/9504205; Mack, Beacom, Bertone 0705.4298 & PRD; Peter 0902.1347 & PRD	Frandsen + Sarkar 1003.4505 & PRL; Vincent, Serenelli, Scott 1504.04378 + 1605.06502 & JCAP	Farrar and Wadekar, 1903.12190
Stellar Populations	Friedland, Giannotti, Wise 1210.1271 & PRL; Heger et al. 0809.4703 & ApJ	Zentner and Hearin 1110.5919 & PRD	Friedland + Giannotti 0709.2164; Redondo + Postma 0811.0326; An, Pospelov, Pradler 1302.3884; Hardy and Lasenby 1611.05852
Dense Objects (WDs, NSs,)	Baryakhtar et al., 1704.01577 & PRL	SDM, Yu, Zurek 1103.5472 & PRD; Kouvaris et al.; Bramante et al.,	Bramante + Linden 1405.1031 & PRL
Supernova	Turner et al. + Raffelt et al., 1988 - 1996; Chang, Essig, <i>SDM</i> 1803.00993 & JHEP	Zhang 1404.7172 & JCAP; Chang, Essig, <i>SDM</i> 1803.00993 & JHEP	Chang, Essig, <i>SDM</i> 1803.00993 + 1611.03864 & JHEP; Hardy and Lasenby 1611.05852 & JHEP

How to look for DM in stars?

	Canonical DM (WIMP, QCD axion)	Asymmetric DM	Hidden Sectors (including light bosons)	
Solar System Objects	Press & Spergel Apj; Edsjö hep-ph/9504205; Mack, Beacom, Bertone 0705.4298 & PRD; Peter 0902.1347 & PRD	Frandsen + Sarkar 1003.4505 & PRL; Vincent, Serenelli, Scott 1504.04378 + 1605.06502 & JCAP	Farrar and Wadekar, 1903.12190	
Stellar Populations	Friedland, Giannotti, Wise 1210.1271 & PRL; Heger et al. 0809.4703 & ApJ	Zentner and Hearin 1110.5919 & PRD	Friedland + Giannotti 0709.2164; Redondo + Postma 0811.0326; An, Pospelov, Pradler 1302.3884; Hardy and Lasenby 1611.05852	
Dense Objects (WDs, NSs,)	Baryakh Giannotti	orrow by and Raen Bramante et al.,	Bramante + Linden 1405.1031 & PRL	
Supernova	Turner et al. + Raffelt et al., 1988 - 1996; Chang, Essig, <i>SDM</i> 1803.00993 & JHEP	Zhang 1404.7172 & JCAP; Chang, Essig, <i>SDM</i> 1803.00993 & JHEP	Chang, Essig, <i>SDM</i> 1803.00993 + 1611.03864 & JHEP; Hardy and Lasenby 1611.05852 & JHEP	

How to look for DM in stars?

		Canonical DM (WIMP, QCD axion)	Asymmetric DM	Hidde (including	n Sectors light bosons)
Solar Syste Objects	or	Exciting opp	ortunities	for iete /	adekar, 1903.12190
Stellar Populatior	G	experim observat	entalists / tionalists /	1313 /	iannotti 0709.2164; Postma 0811.0326; Pradler 1302.3884; Isenby 1611.05852
Dense Obje (WDs, NSs,		modele	ers / etc.!		inden 1405.1031 & PRL

Supernova

Turner et al. + Raffelt et al., 1988 - 1996; Chang, Essig, *SDM* 1803.00993 & JHEP ang 1404.7172 & JCAP Chang, Essig, *SDM* 1803.00993 & JHEP Chang, Essig, *SDM* 1803.00993 + 1611.03864 & JHEP; Hardy and Lasenby 1611.05852 & JHEP