CMB-HD: Probing Dark Matter Particle Properties with Ultra-High-Resolution CMB Lensing

Neelima Sehgal
LSST DM KICP
August 6th, 2019

Ho Nam Nguyen, NS, Mathew Madhavacheril, PRD, 2019, (arXiv:1710.03747)

Small-Scale CDM Problems?
Small-Scale CDM Problems?

- CDM works well on scales larger than 10 kpc, but seems to fail on smaller scales (maybe):
Small-Scale CDM Problems?

• CDM works well on scales larger than 10 kpc, but seems to fail on smaller scales (maybe):
 • Missing Dark Matter Satellites?
Small-Scale CDM Problems?

- CDM works well on scales larger than 10 kpc, but seems to fail on smaller scales (maybe):
 - Missing Dark Matter Satellites?
 - Cores vs cusps?
Small-Scale CDM Problems?

- CDM works well on scales larger than 10 kpc, but seems to fail on smaller scales (maybe):
 - Missing Dark Matter Satellites?
 - Cores vs cusps?
 - Too-big to fail?
Small-Scale CDM Problems?

- CDM works well on scales larger than 10 kpc, but seems to fail on smaller scales (maybe):
 - Missing Dark Matter Satellites?
 - Cores vs cusps?
 - Too-big to fail?
 - Too much diversity?
Small-Scale CDM Problems?

- CDM works well on scales larger than 10 kpc, but seems to fail on smaller scales (maybe):
 - Missing Dark Matter Satellites?
 - Cores vs cusps?
 - Too-big to fail?
 - Too much diversity?
- Data on the properties of structure on scales below 10 kpc is not conclusive
Small-Scale CDM Problems?

- CDM works well on scales larger than 10 kpc, but seems to fail on smaller scales (maybe):
 - Missing Dark Matter Satellites?
 - Cores vs cusps?
 - Too-big to fail?
 - Too much diversity?

- Data on the properties of structure on scales below 10 kpc is not conclusive

Key Question: What do matter fluctuations look like on small-scales?
Measurements of Small-Scale Structure
Measurements of Small-Scale Structure

- Identifying dwarf galaxies by their stars - star formation may be quenched, masses of dwarfs require expensive spectroscopy
Measurements of Small-Scale Structure

- Identifying dwarf galaxies by their stars - star formation may be quenched, masses of dwarfs require expensive spectroscopy

- Measure abundance of ultra-faint, high-z galaxies in Hubble Frontier fields - photo-z, survey volume, survey selection uncertainties

Neelima Sehgal, Stony Brook
Measurements of Small-Scale Structure

- Identifying dwarf galaxies by their stars - star formation may be quenched, masses of dwarfs require expensive spectroscopy

- Measure abundance of ultra-faint, high-z galaxies in Hubble Frontier fields - photo-z, survey volume, survey selection uncertainties

- Abundance of high-z gamma-ray bursts - uncertainty in mass of host halo
Measurements of Small-Scale Structure

- Identifying dwarf galaxies by their stars - star formation may be quenched, masses of dwarfs require expensive spectroscopy

- Measure abundance of ultra-faint, high-z galaxies in Hubble Frontier fields - photo-z, survey volume, survey selection uncertainties

- Abundance of high-z gamma-ray bursts - uncertainty in mass of host halo

- Tidal debris streams from disrupted MW satellites - largest effect from most massive subhalo, substructure of baryonic disk can also disrupt stream

Neelima Sehgal, Stony Brook
Measurements of Small-Scale Structure

- Identifying dwarf galaxies by their stars - star formation may be quenched, masses of dwarfs require expensive spectroscopy.

- Measure abundance of ultra-faint, high-z galaxies in Hubble Frontier fields - photo-z, survey volume, survey selection uncertainties.

- Abundance of high-z gamma-ray bursts - uncertainty in mass of host halo.

- Tidal debris streams from disrupted MW satellites - largest effect from most massive subhalo, substructure of baryonic disk can also disrupt stream.

- Lyman-alpha forest - baryons may have power on small scales not traced by dark matter.
Measurements of Small-Scale Structure

- Identifying dwarf galaxies by their stars - star formation may be quenched, masses of dwarfs require expensive spectroscopy

- Measure abundance of ultra-faint, high-z galaxies in Hubble Frontier fields - photo-z, survey volume, survey selection uncertainties

- Abundance of high-z gamma-ray bursts - uncertainty in mass of host halo

- Tidal debris streams from disrupted MW satellites - largest effect from most massive subhalo, substructure of baryonic disk can also disrupt stream

- Lyman-alpha forest - baryons may have power on small scales not traced by dark matter

- Galaxy-galaxy strong lensing in optical and mm-wavelegths - need to disentangle complex structure of background source from substructure
Gravitational Lensing of the Cosmic Microwave Background
Gravitational Lensing of the Cosmic Microwave Background

- CMB Lensing is when light from the primordial CMB is bent by intervening matter
Gravitational Lensing of the Cosmic Microwave Background

- CMB Lensing is when light from the primordial CMB is bent by intervening matter.
- Traditionally measured to probe large-scale structure.
Gravitational Lensing of the Cosmic Microwave Background

- CMB Lensing is when light from the primordial CMB is bent by intervening matter

- Traditionally measured to probe large-scale structure

- Recently, it has been used to measure halo-sized objects
Gravitational Lensing of the Cosmic Microwave Background

- CMB Lensing is when light from the primordial CMB is bent by intervening matter.

- Traditionally measured to probe large-scale structure.

- Recently, it has been used to measure halo-sized objects.

First Measurement of CMB Lensing on Halo Scales
Madhavacheril, NS, for the ACT Collaboration
PRL, 114, 2015
Advantage of CMB Lensing to Probe Small-Scale Structure
Advantage of CMB Lensing to Probe Small-Scale Structure

1. Directly sensitive to dark matter via gravitational lensing
Advantage of CMB Lensing to Probe Small-Scale Structure

1. Directly sensitive to dark matter via gravitational lensing
2. Source light is at well-defined redshift
Advantage of CMB Lensing to Probe Small-Scale Structure

1. Directly sensitive to dark matter via gravitational lensing
2. Source light is at well-defined redshift
3. Properties of primordial CMB are well understood
Advantage of CMB Lensing to Probe Small-Scale Structure

1. Directly sensitive to dark matter via gravitational lensing
2. Source light is at well-defined redshift
3. Properties of primordial CMB are well understood
4. Sensitive to structure at higher redshifts than other gravitational lensing probes; this makes it more sensitive to FDM/WDM-type models
CMB Lensing Power Spectrum

\[C_{nl}^{\text{nl, CDM}} \]

\[L \]

Neelima Sehgal, Stony Brook
CMB Lensing Power Spectrum is matter power spectrum convolved with window.
CMB Lensing Power Spectrum

CMB Lensing Power Spectrum is matter power spectrum convolved with window

\[C_L^{\phi \phi} = \frac{9 \Omega_m^2 H_0^4}{c^4} \int_0^{\chi_s} d\chi \left(\frac{\chi_s - \chi}{\chi^2 \chi_s} \right)^2 \frac{(1 + z)^2 P_m (k, z(\chi))}{k^4} \]
CMB Lensing Power Spectrum

CMB Lensing Power Spectrum is matter power spectrum convolved with window

\[C_L^{\phi \phi} = \frac{9 \Omega_m^2 H_0^4}{c^4} \int_0^{\chi_s} d\chi \left(\frac{\chi_s - \chi}{\chi_s} \right)^2 \frac{(1+z)^2 P_m(k,z(\chi))}{k^4} \]

\[C_L^{\kappa \kappa} = \frac{[L(L+1)]^2 C_L^{\phi \phi}}{4} \]
CMB Lensing Power Spectrum

CMB Lensing Power Spectrum is matter power spectrum convolved with window.

Measured on scales $L < 3000$ so far ($k < 1 \text{ Mpc}^{-1}$)

\[
C_L^{\phi \phi} = \frac{9 \Omega_m^2 H_0^4}{c^4} \int_0^{\chi_s} d\chi \left(\frac{\chi_s - \chi}{\chi_s^2} \right)^2 \frac{(1 + z)^2 P_m(k, z(\chi))}{k^4}
\]

\[
C_L^{\kappa \kappa} = \frac{[L(L + 1)]^2 C_L^{\phi \phi}}{4}
\]
CMB Lensing Power Spectrum is matter power spectrum convolved with window.

\[C_{\phi \phi}^{(\text{CMB, CDM})} = \frac{9 \Omega_m^2 H_0^4}{c^4} \int_0^{\chi_s} d\chi \left(\frac{\chi_s - \chi}{\chi^2 \chi_s} \right)^2 \frac{(1 + z)^2 P_m(k, z(\chi))}{k^4} \]

\[C_{\kappa \kappa}^{(\text{CMB, CDM})} = \frac{[L(L+1)]^2 C_{\phi \phi}^{(\text{CMB, CDM})}}{4} \]

Measured on scales \(L < 3000 \) so far (\(k < 1 \text{ Mpc}^{-1} \))

Want to measure scales \(L \sim 30,000 \) (\(k \sim 10 \text{ Mpc}^{-1} \) and \(M < 10^9 \text{ Msun} \))

Neelima Sehgal, Stony Brook
CMB Lensing Power Spectrum is matter power spectrum convolved with window.

\[
C_{L}^{\phi\phi} = \frac{9\Omega_{m0}^2 H_0^4}{c^4} \int_0^{\chi_s} d\chi \left(\frac{\chi_s - \chi}{\chi^2 \chi_s} \right)^2 \frac{(1+z)^2 P_m(k,z(\chi))}{k^4}
\]

\[
C_{L}^{\kappa\kappa} = \frac{[L(L+1)]^2 C_{L}^{\phi\phi}}{4}
\]

Measured on scales \(L < 3000 \) so far \((k < 1 \text{ Mpc}^{-1}) \)

Want to measure scales \(L \sim 30,000 \) \((k \sim 10 \text{ Mpc}^{-1} \text{ and } M < 10^{9} \text{ Msun}) \)

Neelima Sehgal, Stony Brook
CMB Lensing Power Spectrum is matter power spectrum convolved with window.

\[
C_L^{(i)} = \frac{9\Omega_m^2 H_0^4}{c^4} \int_0^{\chi_s} d\chi \left(\frac{\chi_s - \chi}{\chi^2 \chi_s} \right)^2 \frac{(1+z)^2 P_m(k, z(\chi))}{k^4}
\]

\[
C_L^{KK} = \frac{[L(L+1)]^2 C_L^{(i)}}{4}
\]

Measured on scales \(L < 3000\) so far (\(k < 1\) Mpc\(^{-1}\))

Want to measure scales \(L \sim 30,000\) (\(k \sim 10\) Mpc\(^{-1}\) and \(M < 10^{9}\) Msun)

at these scales sensitive to structure at \(z \sim 1-3\)
CMB Lensing Power Spectrum

CMB Lensing Power Spectrum is matter power spectrum convolved with window at these scales sensitive to structure at $z \approx 1-3$.

Measured on scales $L < 3000$ so far ($k < 1$ Mpc$^{-1}$)

Want to measure scales $L \sim 30,000$ ($k \sim 10$ Mpc$^{-1}$ and $M < 10^9$ Msun)

Contrast between CDM and models that wash out small-scale structure is larger at higher redshifts

Neelima Sehgal, Stony Brook
CMB Lensing Power Spectrum for CDM Versus FDM/WDM

\[
\frac{C_{\text{L}}^{\text{FSR, CDM}} - C_{\text{L}}^{\text{FSR, CDM}}}{C_{\text{L}}} \\
\begin{align*}
10^{-22}\text{eV FDM} \\
1\text{keV WDM}
\end{align*}
\]
CMB Lensing Power Spectrum for CDM Versus FDM/WDM

Fractional difference between FDM/WDM and CDM for the CMB lensing power spectrum

Neelima Sehgal, Stony Brook
While we directly measure structure with lensing, as opposed to using a baryonic tracer, baryons may still suppress matter power.

Fractional difference between FDM/WDM and CDM for the CMB lensing power spectrum.
CMB Lensing Power Spectrum for CDM Versus FDM/WDM

While we directly measure structure with lensing, as opposed to using a baryonic tracer, baryons may still suppress matter power but shape may be different.

Fractional difference between FDM/WDM and CDM for the CMB lensing power spectrum.
While we directly measure structure with lensing, as opposed to using a baryonic tracer, baryons may still suppress matter power. But shape may be different.

1.) If see little deviation from pure CDM curve, that constrains both baryons and alternate DM models.
CMB Lensing Power Spectrum for CDM Versus FDM/WDM

While we directly measure structure with lensing, as opposed to using a baryonic tracer, baryons may still suppress matter power but shape may be different.

Fractional difference between FDM/WDM and CDM for the CMB lensing power spectrum

1.) If see little deviation from pure CDM curve, that constrains both baryons and alternate DM models
2.) If see significant deviation, then can potentially use shape of curve to determine whether it is due to baryons or alternative to CDM
Dark Matter Constraints Not Degenerate with Neutrino Mass
Dark Matter Constraints Not Degenerate with Neutrino Mass

CMB-S4 Science Book

$\Sigma m_\nu \leq 30 \text{ meV}$

$\Sigma m_\nu \leq 60 \text{ meV}$

$\Sigma m_\nu \leq 90 \text{ meV}$

$\Sigma m_\nu \leq 120 \text{ meV}$

Neelima Sehgal, Stony Brook
Dark Matter Constraints Not Degenerate with Neutrino Mass

CMB lensing is known for its potential to constrain the sum of the neutrino masses
Dark Matter Constraints Not Degenerate with Neutrino Mass

CMB lensing is known for its potential to constrain the sum of the neutrino masses

Neelima Sehgal, Stony Brook
Dark Matter Constraints Not Degenerate with Neutrino Mass

CMB lensing is known for its potential to constrain the sum of the neutrino masses

Alternative DM models of interest suppress power on much smaller scales
Dark Matter Constraints Not Degenerate with Neutrino Mass

CMB lensing is known for its potential to constrain the sum of the neutrino masses

Alternative DM models of interest suppress power on much smaller scales

Neelima Sehgal, Stony Brook
Dark Matter Constraints Not Degenerate with Neutrino Mass

CMB lensing is known for its potential to constrain the sum of the neutrino masses

Alternative DM models of interest suppress power on much smaller scales
Dark Matter Constraints Not Degenerate with Neutrino Mass

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2019, PRD
Dark Matter Forecasts Using Ultra-Small-Scale CMB Lensing

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2019, PRD
NS et al., 2019, arXiv:1903.03263

Neelima Sehgal, Stony Brook
Dark Matter Forecasts Using Ultra-Small-Scale CMB Lensing

8-sigma preference for FDM over CDM

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2019, PRD
NS et al., 2019, arXiv:1903.03263
Dark Matter Forecasts Using Ultra-Small-Scale CMB Lensing

Need camera 3 times more sensitive and with 5 times better resolution than CMB-S4

8-sigma preference for FDM over CDM

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2019, PRD
NS et al., 2019, arXiv:1903.03263

Neelima Sehgal, Stony Brook
Need camera 3 times more sensitive and with 5 times better resolution than CMB-S4

CMB-HD is new proposed experiment

8-sigma preference for FDM over CDM
Instrument Path

Two new 30-meter mm-wave telescopes in Atacama Desert with total sensitivity 3 times deeper than CMB-S4 == CMB-HD
Motivation of CMB-HD

Rich Science from CMB-HD:
- Dark Matter Properties from Small-Scale Matter Power Spectrum
- Number of Relativistic Species
- Delensing for Primordial Gravitational Waves
- Neutrino Mass
- Dark Energy
- Galaxy Cluster Astrophysics
- Galaxy Formation
- Reionization
- Planetary Studies
- Mapping Transient Sky
- Synergy with Optical Lensing Surveys
- Novel Ideas

Neelima Sehgal, Stony Brook
Motivation of CMB-HD

Rich Science from CMB-HD:
- Dark Matter Properties from Small-Scale Matter Power Spectrum
- Number of Relativistic Species
- Delensing for Primordial Gravitational Waves
- Neutrino Mass
- Dark Energy
- Galaxy Cluster Astrophysics
- Galaxy Formation
- Reionization
- Planetary Studies
- Mapping Transient Sky
- Synergy with Optical Lensing Surveys
- Novel Ideas

Stack favorite type of object in CMB-HD lensing map to measure its mass

Neelima Sehgal, Stony Brook
Motivation of CMB-HD

Rich Science from CMB-HD:
- Dark Matter Properties from Small-Scale Matter Power Spectrum
- Number of Relativistic Species
- Delensing for Primordial Gravitational Waves
- Neutrino Mass
- Dark Energy
- Galaxy Cluster Astrophysics
- Galaxy Formation
- Reionization
- Planetary Studies
- Mapping Transient Sky
- Synergy with Optical Lensing Surveys
- Novel Ideas

Stack favorite type of object in CMB-HD lensing map to measure its mass

Neelima Sehgal, Stony Brook
Motivation of CMB-HD

Rich Science from CMB-HD:
Dark Matter Properties from Small-Scale Matter Power Spectrum
Number of Relativistic Species
Delensing for Primordial Gravitational Waves
Neutrino Mass
Dark Energy
Galaxy Cluster Astrophysics
Galaxy Formation
Reionization
Planetary Studies
Mapping Transient Sky
Synergy with Optical Lensing Surveys
Novel Ideas

Stack favorite type of object in CMB-HD lensing map to measure its mass

CMB-HD Probe of Light Particles

Table 1: Summary of CMB-HD key science goals in fundamental physics

<table>
<thead>
<tr>
<th>Science</th>
<th>Parameter</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Matter</td>
<td>S/N: Significance in Differentiating FDM/WDM from CDMa</td>
<td>S/N = 8</td>
</tr>
<tr>
<td>New Light Species</td>
<td>N_{eff}: Effective Number of Relativistic Speciesb</td>
<td>$\sigma(N_{\text{eff}}) = 0.014$</td>
</tr>
<tr>
<td>Inflation</td>
<td>f_{NL}: Primordial Non-Gaussianityc</td>
<td>$\sigma(f_{\text{NL}}) = 0.26$</td>
</tr>
<tr>
<td>Inflation</td>
<td>A_{lens}: Residual Lensing B-modesd</td>
<td>$A_{\text{lens}} = 0.1$</td>
</tr>
</tbody>
</table>

CMB-HD Probe of Light Particles

Table 1: Summary of CMB-HD key science goals in fundamental physics

<table>
<thead>
<tr>
<th>Science</th>
<th>Parameter</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Matter</td>
<td>S/N: Significance in Differentiating FDM/WDM from CDM<sup>a</sup></td>
<td>S/N = 8</td>
</tr>
<tr>
<td>New Light Species</td>
<td>N_{eff}: Effective Number of Relativistic Species<sup>b</sup></td>
<td>$\sigma(N_{\text{eff}}) = 0.014$</td>
</tr>
<tr>
<td>Inflation</td>
<td>f_{NL}: Primordial Non-Gaussianity<sup>c</sup></td>
<td>$\sigma(f_{\text{NL}}) = 0.26$</td>
</tr>
<tr>
<td>Inflation</td>
<td>A_{lens}: Residual Lensing B-modes<sup>d</sup></td>
<td>$A_{\text{lens}} = 0.1$</td>
</tr>
</tbody>
</table>

CMB-HD Probe of Light Particles

Table 1: Summary of CMB-HD key science goals in fundamental physics

<table>
<thead>
<tr>
<th>Science</th>
<th>Parameter</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Matter</td>
<td>S/N: Significance in Differentiating FDM/WDM from CDM(^a)</td>
<td>S/N = 8</td>
</tr>
<tr>
<td>New Light Species</td>
<td>(N_{\text{eff}}): Effective Number of Relativistic Species(^b)</td>
<td>(\sigma(N_{\text{eff}}) = 0.014)</td>
</tr>
<tr>
<td>Inflation</td>
<td>(f_{\text{NL}}): Primordial Non-Gaussianity(^c)</td>
<td>(\sigma(f_{\text{NL}}) = 0.26)</td>
</tr>
<tr>
<td>Inflation</td>
<td>(A_{\text{lens}}): Residual Lensing B-modes(^d)</td>
<td>(A_{\text{lens}} = 0.1)</td>
</tr>
</tbody>
</table>

Summary
Summary

• Key question: what do matter fluctuations look like on small scales?
Summary

- Key question: what do matter fluctuations look like on small scales?

- Multiple techniques to measure this are proposed, each with different challenges and systematics
Summary

• Key question: what do matter fluctuations look like on small scales?

• Multiple techniques to measure this are proposed, each with different challenges and systematics

• Another complementary, potentially powerful technique, with different systematics, is to use ultra-deep, high-resolution CMB lensing to measure the matter power spectrum
Summary

• Key question: what do matter fluctuations look like on small scales?

• Multiple techniques to measure this are proposed, each with different challenges and systematics

• Another complementary, potentially powerful technique, with different systematics, is to use ultra-deep, high-resolution CMB lensing to measure the matter power spectrum

• Requires two 30-meter mm-wave telescopes with total sensitivity 3 times deeper than proposed CMB-S4
Summary

• Key question: what do matter fluctuations look like on small scales?

• Multiple techniques to measure this are proposed, each with different challenges and systematics.

• Another complementary, potentially powerful technique, with different systematics, is to use ultra-deep, high-resolution CMB lensing to measure the matter power spectrum.

• Requires two 30-meter mm-wave telescopes with total sensitivity 3 times deeper than proposed CMB-S4.

• Would open new frontier of mm-wave observations.
Summary

• Key question: what do matter fluctuations look like on small scales?

• Multiple techniques to measure this are proposed, each with different challenges and systematics

• Another complementary, potentially powerful technique, with different systematics, is to use ultra-deep, high-resolution CMB lensing to measure the matter power spectrum

• Requires two 30-meter mm-wave telescopes with total sensitivity 3 times deeper than proposed CMB-S4

• Would open new frontier of mm-wave observations

• Good motivation for future ground-based CMB experiment, i.e. CMB-HD
Summary

- Key question: what do matter fluctuations look like on small scales?

- Multiple techniques to measure this are proposed, each with different challenges and systematics

- Another complementary, potentially powerful technique, with different systematics, is to use ultra-deep, high-resolution CMB lensing to measure the matter power spectrum

- Requires two 30-meter mm-wave telescopes with total sensitivity 3 times deeper than proposed CMB-S4

- Would open new frontier of mm-wave observations

- Good motivation for future ground-based CMB experiment, i.e. CMB-HD (cmb-hd.slack.com — email me to join)