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Small-Scale CDM Problems?

* CDM works well on scales larger than 10 kpc,
but seems to fail on smaller scales (maybe):

 Missing Dark Matter Satellites?
e Cores vs cusps?
* Too-big to fail?

 Too much diversity?

 Data on the properties of structure on scales
below 10 kpc is not conclusive

Key Question: What do matter fluctuations look like on small-scales?
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Measurements of Small-Scale Structure

* |dentifying dwarf galaxies by their stars - star formation may be quenched,
masses of dwarfs require expensive spectroscopy

* Measure abundance of ultra-faint, high-z galaxies in Hubble Frontier fields -
photo-z, survey volume, survey selection uncertainties

 Abundance of high-z gamma-ray bursts - uncertainty in mass of host halo

* Tidal debris streams from disrupted MW satellites - largest effect from most
massive subhalo, substructure of baryonic disk can also disrupt stream

* | yman-alpha forest - baryons may have power on small scales not traced
by dark matter

 (Galaxy-galaxy strong lensing in optical and mm-wavelegths - need to
disentangle complex structure of background source from substructure
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Gravitational Lensing of the

Cosmic Microwave Background

e CMB Lensing is when
light from the primordial

CMB is bent by
intervening matter

e Traditionally measured to
probe large-scale
structure

e Recently, it has been
used to measure halo-
sized objects

First Measurement of CMB Lensing on Halo Scales
Madhavacheril, NS, for the ACT Collaboration
PRL, 114, 2015
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Advantage of CMB Lensing to
Probe Small-Scale Structure

1. Directly sensitive to dark matter via gravitational lensing
2. Source light is at well-defined redshift
3. Properties of primordial CMB are well understood

4. Sensitive to structure at higher redshifts than other
gravitational lensing probes; this makes it more sensitive
to FDM/WDM-type models
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Contrast between CDM and models that wash out

small-scale structure is larger at higher redshifts
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Dark Matter Forecasts Using
Ultra-Small-Scale CMB Lensing

—— 10"%2eV FDM
--- CDM Need camera 3 times
1010 I CMB-HD more sensitive and with
o : 5 times better resolution
N than CMB-S4
O
CMB-HD is new

proposed experiment
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Ho Nam Nguyen, NS, Mathew Madhavacheril, 2019, PRD
NS et al., 2019, arXiv:1903.03263 Neelima Sehgal, Stony Brook



Instrument Path

Two new 30-meter mm-wave telescopes in Atacama Desert
with total sensitivity 3 times deeper than CMB-S4 == CMB-HD

Neelima Sehgal, Stony Brook
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Synergy with Optical Lensing Surveys

Novel Ideas
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Rich Science from CMB-HD:

Dark Matter Properties from Small-Scale
Matter Power Spectrum

Number of Relativistic Species

Delensing for Primordial Gravitational Waves

Neutrino Mass

NS et al. 2019, Science White

Dark Energy | Paper for Astro2020 Decadal
Galaxy Cluster Astrophysics (arXiv:1903.03263)
Galaxy Formation NS et 5016
Reionization CMB-HD APC White Paper for
Planetary Studies Astro2020 Decadal
I\/Iapplng Transient Sky (arXiv:1906.10134)
Synergy with Optical Lensing Surveys

Novel Ideas Stack favorite type of object in CMB-HD lensing map to measure its mass
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CMB-HD Probe of Light Particles

Table 1: Summary of CMB-HD key science goals in fundamental physics

Science Parameter Sensitivity
Dark Matter S/N: Significance in Differentiating FDM/WDM from CDM?* S/N =8
New Light Species N.g: Effective Number of Relativistic Speciesb o(Negr) = 0.014
Inflation fni,: Primordial Non-Gaussianity® o(fnr) = 0.26
Inflation Ajens: Residual Lensing B-modes? Ajens = 0.1

NS et al. 2019, CMB-HD APC White Paper for Astro2020 Decadal (arXiv:1906.10134)
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Key question: what do matter fluctuations look like on small
scales?

Multiple techniques to measure this are proposed, each with
different challenges and systematics

Another complementary, potentially powerful technique, with
different systematics, is to use ultra-deep, high-resolution
CMB lensing to measure the matter power spectrum

Requires two 30-meter mm-wave telescopes with total
sensitivity 3 times deeper than proposed CMB-54

Would open new frontier of mm-wave observations

Good motivation for future ground-based CMB experiment,
i.e. CMB-HD (cmb-hd.slack.com — email me to join)


http://cmb-hd.slack.com

