Dark matter decaying in the late universe can relieve the H₀ tension

Kyriakos Vattis

Based on Vattis, Koushiappas & Loeb, Phys. Rev. D 99, 121302(R) (2019)

The ACDM universe

- Cold dark matter ~ 26%
- Dark energy in the form of a cosmological constant ~ 68%

The Hubble tension

Tension with flat ACDM

The distance ladder: SH0ES

$$\log H_0 = \frac{(m_{x,N4258}^0 - \mu_{0,N4258}) + 5a_x + 25}{5}$$

- Cepheid stars
- Supernovae of Type la
- 19 hosts of both
- 5 different methods of distance calibration

Riess, Adam G., et al. The Astrophysical Journal 826.1 (2016): 56.

The CMB Power spectrum

 $egin{aligned} \Omega_b h^2 & & \ \Omega_m h^2 & & \ \Omega_m h^2 & & \ 100 heta_{MC} & & \ & au & \ & & \ & & \ & n_s & \ & \ & & \ &$

Aghanim, N., et al. arXiv:1807.06209 (2018).

The sound horizon

$$\begin{split} l &= 1/\theta_s \approx d_a/r_s \\ c_s \approx c[3(1+3\Omega_b/4\Omega_r)]^{-1/2} \\ r_s \approx \int_0^{t_*} c_s dt \\ d_a &= d_L(z_*)/(1+z_*)^2 \\ d_L(z_*) &= \frac{c(1+z)}{H_0} \int_0^{z_*} \frac{dz}{\sqrt{\Omega_r(1+z)^4 + \Omega_m(1+z)^3 + \Omega_\Lambda}} \end{split}$$

Aghanim, N., et al. *arXiv:1807.06209* (2018).

Planck 2018

- $H_0^{R18} = 73.24 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- H₀^{P18} =67.36 km s⁻¹ Mpc⁻¹ (TT,TE,EE+lowE+lensing)
- 3.6 σ disagreement (4.4 σ)

Riess, Adam G., et al. *The* Astrophysical *Journal* 861.2 (2018): 126. Aghanim, N., et al.*arXiv:1807.06209* (2018).

Planck 2018

- $H_0^{R18} = 73.24 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- H₀^{P18} =67.36 km s⁻¹ Mpc⁻¹ (TT,TE,EE+lowE+lensing)
- 3.6 σ disagreement (4.4 σ)

Riess, Adam G., et al. *The* Astrophysical *Journal* 861.2 (2018): 126. Aghanim, N., et al.*arXiv:1807.06209* (2018).

 $\psi \rightarrow \chi \gamma$ $\mathbf{p}_{0} = 0$

Blackadder and Koushiappas. PRD 90.10 (2014): 103527. Blackadder and Koushiappas. PRD 93.2 (2016): 023510.

$$p_{\mu,0} = (m_0 c^2, \mathbf{0}),$$

$$p_{\mu,1} = (\epsilon m_0 c^2, \mathbf{p_1}),$$

$$p_{\mu,2} = ((1 - \epsilon) m_0 c^2, \mathbf{p_2})$$

$$\epsilon = \frac{1}{2}(1 - \widetilde{m}^2)$$

$$\beta_2^2 = \frac{\epsilon^2}{(1-\epsilon)^2}$$

$$\rho_2(a) = \frac{\mathcal{C}}{a^3} \int_{a_*}^a \frac{e^{-\Gamma t(a_D)}}{a_D H_D} \left[\frac{\beta_2^2}{1 - \beta_2^2} \left(\frac{a_D}{a} \right)^2 + 1 \right]^{1/2} da_D$$

Blackadder and Koushiappas. PRD 90.10 (2014): 103527.

Blackadder and Koushiappas. PRD 93.2 (2016): 023510.

Evolution of the equation of state

$$w_2(a) = \frac{1}{3} \langle v_2(a)^2 \rangle$$

	TABLE I: 95% Confidence Limits					
model	6	Γ (Gyr ⁻¹)	Γ^{-1} (Gyr)	$ au/t_0$		
moder	e	Upper Limit	Lower Limit	Lower Limit		
Two	0.499	0.040	25	1.8		
Two	0.49	0.045	22	1.6		
Two	0.45	0.054	19	1.4		
Two	0.4	0.067	15	1.1		
Two	0.3	0.074	13	0.98		
Two	0.2	0.12	8.4	0.61		
Two	0.1	0.12	8.4	0.61		
Many	1	0.037	27	2.0		
Many	0.5	0.069	14	1.1		
Many	0.1	0.15	6.7	0.48		

$$\begin{aligned} H^2(a) \equiv \left(\frac{\dot{a}}{a}\right)^2 &= \frac{8\pi G}{3} \sum_i \rho_i(a) \\ &\sum_i \rho_i(a) = \rho_0(a) + \rho_1(a) + \rho_2(a) \\ &+ \rho_r(a) + \rho_\nu(a) + \rho_b(a) + \rho_\Lambda \end{aligned}$$

 $\{\tau, \epsilon, \Omega_{\rm DM}, h\}$

 $-4 \leq \log_{10} \epsilon < \log_{10} 1/2$

 $-3 \le \log_{10} \tau \le 4$

 $0 \le \Omega_{\rm DM} \le 1$

 $0.5 \leq h \leq 1$

Run these against:

- Distance ladder measurements
- BOSS DR 12, DR 14 quasar BAO
- SDSS Ly-alpha auto- and cross-correlation function
- Under the assumption that the universe is correctly described by Planck18 at recombination

Vattis, Koushiappas & Loeb, Phys. Rev. D 99, 121302(R) (2019)

Vattis, Koushiappas & Loeb, Phys. Rev. D **99**, 121302(R) (2019)

$\log_{10}\epsilon$	$\log_{10}(\tau/\mathrm{Gyr})$	$\Omega_{ m DM}$	h
$-0.78^{+0.14}_{-2.10}$	$1.55\substack{+0.63 \\ -0.25}$	$0.24\substack{+0.03\\-0.03}$	$0.70\substack{+0.04 \\ -0.03}$

- Part of this allowed values of the lifetime parameter space is ruled out by the SDSS Ly-alpha power spectrum (see Wang et al., PRD 85, 043514 (2012) & PRD 88, 123515 (2013))
- BAO inverse distance ladder

Relieving the tension

Vattis, Koushiappas & Loeb, Phys. Rev. D 99, 121302(R) (2019)

Possible tests

LSST

Vattis, Koushiappas & Loeb, Phys. Rev. D 99, 121302(R) (2019)

$$\frac{d^2D}{da^2} + \left(\frac{d\ln H}{da} + \frac{3}{a}\right)\frac{dD}{da} - \frac{4\pi G\rho_m}{a^2} = 0$$

Zhan, Knox & Tyson The Astrophysical Journal, 690:923–936, 2009

Conclusions

- The Hubble tension could be a real problem that potentially requires some new physics.
- A Decaying Dark Matter model can help relieve the tension.
- Important caveat: The BAO inverse distance ladder.
- More investigation is required, especially on the effects in structure formation.
- LSST can help to probe such effects.

Thank you

Particle physics model

Super Wimps or excited dark fermions decaying via a magnetic dipole transition

$$\Gamma \sim \delta m^3 / \Lambda^2$$
 $\delta m = 1 - \sqrt{(1 - 2\epsilon)}$

 $\epsilon \approx 0.17$ $\tau \approx 20 \mathrm{Gyr}$

 $\Lambda \approx 10^{16} {\rm GeV}$

 $\delta m \approx 180 {\rm MeV}$