

Probing Dark Matter Particle Properties with dark matter phase space information in the Milky Way satellites

Mei-Yu Wang Carnegie Mellon University

LSST DM Workshop, U Chicago/KICP, August 5-7, 2019

Discoveries of Milky Way dwarf satellite galaxies

Measuring the DM contents of Milky Way dwarf galaxies

 Measuring velocity of individual star in the systems to infer dark matter content (dynamical mass)

Spherical Jeans Equation :

Effects of J-factor on WIMP annihilation cross section limits

Improving J-factor measurements with current & future spectroscopic follow-up facilities

Instrument/Telescope	Multiplexing	[meter]	[km/s]
DEIMOS/Keck	40	10	2.0
IMACS/Magellan	50	6.5	1.5
M2FS/Magellan	256	6.5	0.9
GIRAFFE/VLT	123	8.2	0.5
GMACS/GMT	50	23.5	2.0

MYW, Drlica-Wagner, Li, Strigari (2019), in preparation

- Applying CMD+ Gaia PM cut to reduce background star contamination
- FOV can be important for nearby dwarf galaxies
- High multiplexing is highly preferred.

Constructing DM velocity distribution in dSphs

Sommerfeld-enhanced J-factor for Milky Way satellite galaxies

Sommerfeld-enhancement can change the order of J-factor among satellite galaxies

Boddy, Kumar, Strigari, MYW (2017)

Dark matter velocity dispersion

 $74.8^{+90.9}_{-40.3}$

 $2.9^{+2.1}_{-2.1}$

21.5

 $6.2^{+4.4}_{-2.9}$

16.6

Draco II

Resonantly produced sterile neutrino mass bound from satellite phase space density

Liouville's theorem:

For dissipationless and collisionless particles, the phase-space density cannot increase => $Q < q_{\rm max}$

$$Q_{\rm MB} \equiv rac{ar
ho}{(2\pi\sigma^2)^{3/2}}$$
 Coarse-grained phase space density

 q_{\max} : Fine-grained phase-space density

MACHO (MAssive Compact Halo Object) dark matter limits

The star cluster in Eridanus II or any compact dwarf galaxies could be dynamically heated by MACHO and therefore expand/dissolve.

Conclusion

- Milky Way satellite galaxies are compelling targets for dark matter searches due to their proximity, high dark matter content, and low astrophysical backgrounds.
- Satellite galaxies stellar kinematic measurement affect the precision of dark matter content determination. It has direct impacts on indirect detection limits of WIMP dark matter model.
- The DM phase space information can be derived from stellar kinematics. It can provide useful constraints on various DM models such as velocity-dependent annihilation channel, sterile neutrino, and MACHO DM.